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Abstract: We present a model composed of nonmonotonic 
neurons that recalls various target patterns from the same 
cue pattern depending on a given context pattern, which 
was essentially difficult for conventional neural network 
models. In this model, the state of the network is projected 
onto a subspace by desensitizing a part of neurons 
depending on the context, and shifts along a trajectory 
attractor in the subspace to reach the target state. The 
model can simulate an arbitrary finite state automaton 
without limitations of size, keeping the merits of distributed 
representation. 
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1. INTRODUCTION  

Let us consider a simplified problem of 
context-dependent association in a neural network with 
fully distributed representation. Specifically, target pattern 

µνT  to be recalled depends not only on cue pattern  S  µ

),,1 pL( =µ but also on pattern C  ν ),,1( qL=ν  representing 
context, where the elements of patterns S , C  and T  
take 1 or -1 randomly with equal probabilities. Although 
this problem appears very simple, conventional neural 
networks have serious difficulty in solving it. 
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 For example, a two-layer network shown in Fig.l (a) in 
which the input units representing S  and C  are directly 
connected to the output units cannot realize the 
input-output relation expressed by Table 1. This is because 
the set of target patterns are the same for every S  and for 
every C . Even if all target patterns are mutually different, 
no connection weights solve the problem when p and q are 
large enough, since the average of many target patterns 
associated with the same S   (or C ) does not vary much 
with 

µ

ν

ν

µ

ν

µ

µ  (ν ) because of the averaging effect.  Moreover, 
this difficulty is not essentially resolved by introducing 
hidden units, between the input and output units unless we 
use local representation, pq hidden units each of which 
encodes a particular combination of  and C . µS ν

This kind of contextual modification such that S , 
an object S  in a context C , is represented by the 
concatenated pattern (  has been used in most models 
of contextual processing. However, they do not work well 
unless the size (p and q) of the problem is small enough, 
due to the above difficulty caused by one-to-many 
correspondence. This means that contextual processing by 

neural networks based on fully distributed representation 
has strong restriction. 
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This paper presents a model of context-dependent 
association that solves the above problem  without using 
local representation. 
 
2. THE MODEL  
 
2.1. Dynamics and contextual modification 

The present model has been developed by modifying 
the dynamics of the analog Hopfield model, namely 
continuous-time fully recurrent neural networks. 
Specifically, the i-th neuron (  acts according to ),,1 ni L=
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where  denotes the instantaneous potential, w  the 
synaptic weight from the j-th neuron,  the output,  the 
external input, 
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τ  a time constant,  output gain, and  

the activation function. These equations are the same as 
conventionally used except that g  is controllable and 

 is a nonmonotonic function 
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where c, c' and h are positive constants (we substitute c=50, 
c'=10, h=0.5 in the experiments described later). 

Since the polarity of u  is important in this model, we 
consider  and treat the vector x  as 
the network state, where sgn(  for  and -1 for 

. The network state x at an instant is represented by a 
point in the state space consisting of 2  possible states. 
When x changes, it almost always moves to an adjacent 
point in the state space because x  changes 
asynchronously. Consequently, x leaves a track with time, 
which we call the trajectory of x. 
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If g  for all neurons, the network is identical to an 
existing model known as the nonmonotone neural network 
(NNN[1]). In the present model, however, the gain g  is 
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Fig.1 – Methods of contextual modification: (a) 
conventional concatenation, and (b) selective desensitization 

used in the present model. 
 

set to zero depending on the context. Since the output  
of the neuron with  does not vary with the input, we 
refer to this operation as desensitization, and about half of 
the neurons are `desensitized' when the network receives a 
contextual modification. The gain vector G =  is 
specified by the context and is different in different 
contexts, in other words, G represents the context. 
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In the following, we regard G in the same light as the 
context pattern C , and deal with the simplest case that 

, where c   is the i-th component 
of  and takes . We also define the network state 
modified by context C  as x ( , which is a 
three-valued (1, 0, -1) vector. In the same way, we define 
the patterns S  and T  modified by C  as  
and , T respectively.  
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2.2. Forming trajectory attractors 

A NNN can have many string-shaped attractors, 
termed trajectory attractors, in its state space, along which 
the network stably makes continuous state transitions [2]. 
This enables the network to associate a cue with an 
arbitrary target, but not to recall different targets 
depending on contexts. Thus in the present model, we form 
trajectory attractors in the subspace composed of the valid 
(not desensitized) neurons in each context. The concrete 
algorithm for it is as follows. 
    First, we give an initial state x )(  and input 
the learning signal r  in the form z  to the 
network modified by C , where  denotes the input 
intensity and r  is the i-th element of r.Then we change r 
bit by bit to T  over some period (5  in the 
simulations below), modifying synaptic weights w  
between valid neurons according to  

ij

 
                                (4) 

 
where ′  denotes a time constant of learning ( ) and 

 is a learning coefficient (since performance of learning 
is better when  is a decreasing function of |  [2], we 
substitute  in the simulations). 
 

Table 1.  Example of the relation of target patterns to cue 
and context patterns that is difficult to realize. 

S 1

S 2

S 3

S 4

S 5

S 6

S 7

S 8

S 9

S 10

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9T 10

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8T 9 T 10

T 1 T 2 T 3 T 4 T 5 T 6 T 7T 8 T 9 T 10

T 1 T 2 T 3 T 4 T 5 T 6T 7 T 8 T 9 T 10

T 1 T 2 T 3 T 4 T 5T 6 T 7 T 8 T 9 T 10

T 1 T 2 T 3 T 4T 5 T 6 T 7 T 8 T 9 T 10

T 1 T 2 T 3T 4 T 5 T 6 T 7 T 8 T 9 T 10

T 1 T 2T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10

T 1T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 10

 
 

While r is moving in the state space, x (  follows 
slightly behind. When r reaches the end T , we keep 
r

)νC
( )νCνµ ,

( )ννµ CT ,=  for a while (1 τ ) so that x   may 
sufficiently approach r. 
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In addition, we input r = νµ ,T  for a short time to the 
network without contextual modification (G=( ) so 
that the state x=T  may become a point attractor (this 
operation is unnecessary when T  naturally becomes an 
attractor, which is the case with the simulations below). 
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We apply the above procedure to all µ  and ν , and 
repeat it over some (about 10 to 30) cycles, gradually 
decreasing λ . If x  follows r even when )( νC λ  = 0, then 
trajectory attractors have been formed. 

 
2.3. Context-dependent recall 

The process of recall is schematically shown in Fig. 2 
where the n-dimensional state space of the network is 
expressed three dimensionally. 

For example, when the network is modified by a 
context pattern C , the network state x is projected onto a 
subspace and it becomes x ( .Then x (  moves 
along the trajectory attractor to T , when it is expected 
that x = T  because T  is an attractor (note that generally 
the potential u  of desensitized neurons is not zero).Even if 
x  , the exact pattern T  is recalled when we release all 
neurons from desensitization. In the same way, if the state 
x  receives modification by C  and C , the network 
recalls  and , respectively, by the state transitions 
along the trajectory attractors in respective subspaces. 
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It should be noted that Fig. 2 is somewhat misleading 
in that the projection directions of x by C , C  and C  are 
orthogonal, indicating no overlap of desensitized neurons; 
but in fact, on average, half of the desensitized neurons are 
common to two different contexts. It should also be noted 
that the output  of desensitized neurons should be at the 
mean level 

1 2 3
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y  (estimated to be 0 in this model) to 
minimize interference between different subspaces. 
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Fig.2 – Recall process in the state space. 
 

 
Fig.3 – Association capacity of the model. 

 
3. COMPUTER SIMULATIONS 
 
3.1. Capacity 
    We carried out computer simulations to examine the 
performance of the model. Fig. 3 shows one of the results, 
in which the maximum number pq of associations that the 
model can correctly form is plotted against the number n of 
neurons. In this experiment, cue patterns S and 
context patterns C  are of the same number (p=q) 
and generated at random; the target pattern T  is one of 
the patterns T  generated at random, and is 
determined by the remainder for |

pS,,1 L

νµ ,

qC,,1 L

pT,,1 L

|νµ −  divided by p as 
shown in Table 1. 
    As we see from the graph, the capacity of this model 
increases nearly proportionally with n. In contrast, when 
we use the conventional method of contextual 
modification (concatenating C  to ), the capacity is 
almost zero even with a NNN, as shown by broken lines in 
Fig. 3. 

S

    We tested the model on various other conditions 
including the case p q and the capacity was larger than 
0.16n in any case, indicating that this model is free from 
the above difficulty in context-dependent association. This 
is thought to be because neither S  or  is directly 
associated with T . 
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Fig.4 – Example of the state transition diagram. 
 
 
3.2. Simulating a finite automaton 
    In our model, the target pattern may be identical to one 
of the cue patterns. Then another target pattern can be 
recalled from the recalled pattern, and by repeating this, 
target patterns can be sequentially recalled. In this process, 
we can control the sequence of patterns is also possible by 
switching the current context. In other words, the state 
transition of the network is controllable. 
    For example, any state transition among S  is 
possible using p context patterns, as shown in Fig. 4 for the 
case of p=4. Also Table 2 shows an example of S -C  
relation that enables arbitrary state transitions in the case 
p=q=10. 

pS,,1 L
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    In practice, we trained the network to act according to 
Table 2. Fig. 5 shows the behavior of the model when S  
is not externally given except for the initial state, where 
similarities 

µ

∑ nsx ii /µ  of the network state x to patterns S  
to S  are plotted against time scaled by the time constant  

1

10

τ . 
    We see in (a) that x shifts from the initial state S  to , 
moving via S , , , etc. to S  while =  is kept 
throughout. On the other hand, x makes different 
transitions by switching C  in (b). It should be noted that 
switch of  does not have to be made when x =  exactly 
holds; that is, we may switch C  in the middle of state 
transitions except when x is midway between S , as 
shown in (b) at t=38

6
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τ . 
    As we see from this example, the model can recall  in 
any order and preserve S  for any time. This means that 
the model simulates a finite state automaton (FSA) with p 
states and q inputs, as is apparent from Fig. 4. Since the 
number of trajectory attractors or transition paths that the 
model can form increases proportionally with n, it follows 
that this model possesses the ability to simulate an 
arbitrary FSA of any size without explosion of neurons. 
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Table 2.  State transition rules used for the experiment. 

S 1

S 2

S 3

S 4

S 5

S 6

S 7

S 8

S 9

S 10

C 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10

S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S 10

S 1S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9S 10

S 1 S 2S 3 S 4 S 5 S 6 S 7 S 8S 9 S 10

S 1 S 2 S 3S 4 S 5 S 6 S 7S 8 S 9 S 10

S 1 S 2 S 3 S 4S 5 S 6S 7 S 8 S 9 S 10

S 1 S 2 S 3 S 4S 5 S 6S 7 S 8 S 9 S 10

S 1 S 2 S 3S 4 S 5 S 6 S 7S 8 S 9 S 10

S 1 S 2S 3 S 4 S 5 S 6 S 7 S 8S 9 S 10

S 1S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9S 10

S 1 S 2 S 3 S 4 S 5S 6 S 7 S 8 S 9 S 10
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(b) 
Fig.5 – Behavior of the model. 

 
 
 
 

4. CONCLUDING REMARKS  
    Although the present model can simulate any FSA, it is 
not equivalent to a FSA, since the model is based on fully 
distributed representation and has high ability of 
generalization. For example, the model can receive an 
unknown combination of cue and context patterns and 
recall a proper target pattern by analogy. This implies that 
the model has, in principle, a potential for surpassing 
conventional intelligent systems based on symbolic 
manipulation. 
    To examine this possibility, however, further 
investigation is required, using not random but structured 
patterns. 
    We also point out that the principle of our model is 
biologically plausible. First, trajectory attractors can be 
formed in a network composed of pairs of excitatory and 
inhibitory neurons with a sigmoid activation function [3], 
and it is suggested that recall in the inferior temporal 
cortex is performed by a pattern shift in the neuronal 
activity [4,5] like the state transition along the trajectory 
attractor. Second, there exists good physiological evidence 
supporting that selective desensitization of neurons is used 
for contextual processing in the brain, but further 
discussion on this subject will be given at some other time. 
 
5. REFERENCES 
[1]    M. Morita, “Memory and learning of sequential 
patterns by nonmonotone neural networks,” Neural 
Networks, vol.9, no.8, pp.1477-1489, 1996. 
[2]    M. Morita, “Associative memory with nonmonotone 
dynamics,” Neural Networks, vol.6, no.1,  pp.115-126, 
1993. 
[3]    A. Suemitsu, S. Morokami, K. Murata, and M. 
Morita, “Computational examination on the dynamics of 
recall activity in the inferior temporal cortex,” Proc.IJCNN 
2002, pp.136-141, 2002. 
[4]    M. Morita, and A. Suemitsu, “Computational 
modeling of pair-association memory in inferior temporal 
cortex,” Cognitive Brain Research, vol.13, pp.169-178, 
2002. 
[5]  M. Morita, “Computational study on the neural 
mechanism of sequential pattern memory,” Cognitive 
Brain Research, vol.5, pp.137-146, 1996. 

 


