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ABSTRACT

In the delayed match-to-sample task, responses of in-
ferior temporal neurons to adjacent stimuli in the se-
quence are correlated to each other when the monkey
was trained repeatedly with the sequence of visual stim-
uli, although the monkey was not required to associate
the stimuli with each other. This correlation, however,
is not observed for a monkey with lesions of the rhinal
cortex, which is not consistently explained by existing
models of such correlated responses. In the present
study, we construct a model consisting of two networks
corresponding to area TE and the perirhinal cortex,
and show that perirhinal plasticity may underlie the
mechanism of implicit association learning.

1. INTRODUCTION

It is known that the inferior temporal cortex (IT) plays
a major role not only in visual recognition but also in
visual short-term and long-term memories. Among the
many examples of physiological evidences supporting
this, the data on memory-related neurons of the mon-
key reported by Miyashita[l] is one of the most im-
portant. This data reveals the phenomenon that after
a monkey was trained repeatedly on a delayed match-
to-sample (DMS) task with a fixed sequence of visual
stimuli, the neuronal responses to adjacent stimuli in
the sequence are correlated to each other, although the
monkey was not required to associate the stimuli ex-
plicitly. This is very interesting from the viewpoint of
the representation and structuralization of long-term
memory in the brain.

To explain this phenomenon, two theoretical mod-
els have been presented; however, they do not match
the physiological evidence in a critical point. In partic-
ular, they both have difficulty in explaining the result
of the lesion study on the rhinal cortex (perirhinal and
entorhinal cortices) which plays an important role in
the formation process of visual memory.

In this paper, we present a model based on the find-
ings on the perirhinal cortex, and show that the associ-
ation between adjacent stimuli is quite possibly learned
by a mechanism different from those mentioned above.

2. BACKGROUND

2.1. IT neurons related to implicit association

The empirical study by Miyashita [1] is summarized as
follows.

First, he trained two monkeys repeatedly on a DMS
task for two weeks using 97 fractal pictures generated
by a computer. In this task, a picture is presented for a
short time as a sample stimulus, and the monkey must
judge whether a picture (test stimulus) presented after
a delay of 16 seconds is the same as the sample or not.
The pictures were numbered from 1 to 97 and used as
a sample always in that order.

Then he recorded the neuronal activities in IT (mainly
in area TE) while the trained monkeys were perform-
ing the task with the pictures used in training (learned
set) and with 97 novel pictures (unlearned set), and
found that many neurons exhibit strong activity dur-
ing the delay period after the sample presentation of
some specific learned pictures. The pictures eliciting a
strong response to each of these neurons did not par-
ticularly have common features or similarity, but they
were often near one another in the picture sequence
in training. That is, a neuron strongly responding to a
learned picture tends to show a large response to neigh-
boring pictures in the learned set.

This result is important in that the delay activ-
ities reflect the temporal relation between stimuli in
the learning process, which clearly differs from selec-
tive response to pictorial features as is usually seen in
IT. It should also be noted that the monkey has only
to remember the sample picture during a single trial
to perform the DMS task used in this experiment, and



need not associate pictures with each other. In this
sense, such association between neighboring pictures
is formed implicitly, which we will refer to as implicit
association.

A similar phenomenon has been observed by Sakai
and Miyashita [2] in the case of a pair-association (PA)
task, in which the monkey must associate a pair of vi-
sual stimuli explicitly. They reported that neurons re-
sponding to both of the paired pictures (‘pair-coding’
neurons) were significantly more neurons than those re-
sponding to two unrelated pictures. Since in training,
paired pictures were presented sequentially with a de-
lay interval, we can regard such neuronal activity as
reflecting the temporal closeness of the visual stimuli.

2.2. Existing theories

At present, there exist two theoretical models explain-
ing the mechanism of implicit association: the attractor
model by Griniasty et al. [3] and Brunel [4], and the
layer model by Wallis [5].

The former uses a recurrent neural network as a
model of the IT network, where the state encoding
a learned picture is an attractor of the network and
the activity pattern (‘code’) representing the sample is
maintained not only during the delay period but also
during the intertrial interval. That is, information on a
sample picture is preserved until sample presentation of
the next picture, which enables the model to correlate
the two picture codes.

On the other hand, the latter model uses a simple
layered network with the trace rule, which is an ex-
tended Hebb rule, where information on the previous
picture is preserved postsynaptically in the form of a
trace value that is elevated by excitation of the presy-
naptic neuron or the input signal and then decays grad-
ually. Since the synapse is reinforced if the postsynap-
tic neuron is excited while some trace value remains,
the response pattern to a picture becomes similar to
the code of the previous picture.

However, neither mechanism of intertrial memory
retention in the two models has been physiologically
verified or seems plausible. Moreover, these models do
not well explain some important findings concerning
the rhinal cortex.

2.3. Rhinal cortex

The rhinal cortex is an area composed of the perirhi-
nal cortex (PRh), which is part of IT and adjacent to
TE, and the entorhinal cortex which is in the medial

temporal lobe. This area, particularly PRh, has re-
cently been drawing attention for its role in memory,
and many physiological findings have been obtained;
we briefly describe some of them (see [6] for details).

First, lesions of PRh of the monkey moderately
impair the learning and performance of DMS tasks,
whereas simple visual recognition is not damaged. In
contrast, they cause critical impairments in association
learning; for example, a monkey with rhinal lesions is
completely incapable of learning a new set of stimuli in
a PA task.

Second, TE neurons of a monkey in the hemisphere,
from which the rhinal cortex had been removed before
training, show the same stimulus selectivity as those
in the intact hemisphere, but do not show the ‘pair-
coding effect’ [7], i.e., the high correlation between the
responses to paired pictures.

These findings indicate that the rhinal cortex is
critical for association learning of visual stimuli, which
does not accord well with either of the above models in
which the rhinal cortex is not taken into consideration
and information on the previous sample is retained at
the neurons exhibiting picture-selective delay activity;
according to those models, although they deal with the
implicit learning in DMS tasks, the pair-coding effect
in TE will not disappear even after the removal of the
rhinal cortex because paired pictures in the PA task
are presented close together in time.

In connection with this, it is known that the rhinal
cortex, particularly PRh, has high plasticity in two re-
spects. One is synaptic plasticity; for example, Tokuyama
et al. [8] demonstrated that the brain-derived neu-
rotrophic factor was upregulated specifically in PRh
during PA learning, indicating that the synaptic plas-
ticity in PRh is related to associating visual stimuli.

The other is the phenomenon that neurons exhibit
a reduced activity during the second or subsequent ex-
posure to a stimulus relative to the first [9], which is
called stimulus-specific adaptation (SSA) or the repeti-
tion inhibition effect. This adaptation effect lasts for a
long time (more than a few minutes), and is not greatly
affected by intervening stimuli presented between the
first presentation and the second presentation of the
stimulus.

Among the neurons exhibiting SSA, those in which
the response varies according to not the familiarity but
by the recency of the stimulus are referred to as recency
neurons. Although recency neurons are also found in
TE and the entorhinal cortex, their ratio is particu-
larly large in PRh, and the duration of adaptation of
recency neurons is significantly longer in PRh than in
TE. These findings suggest that the information on a
sample picture is retained by the recency neurons in



Figure 1: Block diagram of the model.

PRh to form implicit association.

3. THE MODEL OF IMPLICIT LEARNING
FORMATION

We previously constructed a model composed of two
neural networks corresponding to TE and PRh, and
have shown that it agrees well with the activities of
IT neurons during a PA task [10]. This model, how-
ever, is for explicit association and does not explain the
implicit association phenomenon.

Taking account of the above physiological findings,
we modify this model by introducing synaptic plasticity
and ‘recency cells’ showing the adaptation effect in the
network corresponding to PRh. The structure of the
model is shown in Fig.1, where association network /Ny
and trainer network Ny are interconnected.

3.1. The association network

The association network Nj consists of pairs of exci-
tatory and inhibitory cells (Fig.2). The excitatory cell
Ci+ receives a signal r; from Ny with input intensity
of A and recurrent inputs from other units, and emits
output of the unit x;. The inhibitory cell C;” sends a
strong inhibitory signal to C;". In mathematical terms,

v = FDwge -], (1)
Jj=1
du; - + *
Tat T *u¢+zwijxj —wyita, (2
J=1

where wj; and w;; are the synaptic weights from the

jth unit to C’;r and C.~

., w* represents the efficiency

Figure 2: Structure of the association network.

of the inhibitory synapse from C;" to C;, and 6 is a
threshold. The activation function f(u) of each cell is
a monotonic sigmoid function increasing from 0 to 1
given by

1

U

(4)

In parallel with this, using a learning signal gener-
ated by N, learning of the synaptic weights of Ny is
performed according to

dw
T'd—t” = —wj; + iz, (5)
,dwg; B
- Wiy pirizj + Baziz; +v,  (6)

where «aq, 01 and (B2 are learning coefficients, « is a
positive constant representing lateral inhibition among
units, and 7/ is a time constant of learning (7' > 7).

3.2. The trainer network

The structure of the trainer network (N3) is shown in
Fig.3. This network consists of n pairs of output cell
C? and recency cell CT which inhibit C7, corresponding
to the n units of N1, and transforms the input pattern
s = (81, ..., ) into the learning signal r = (r1,...,7,)
for the association network.

The ith cell CY receives the input pattern s =
(s1, ..., n) and the feedback signal z; from N7 through
synaptic weights p;; and g¢;;, respectively, and emits 7;
to the ith unit of Ny. The output r; is also sent to
the recency cell C, which sends an inhibitory signal
z; back to €7, and transiently increases the threshold
or the degree e; of fatigue depending on its value (we
model SSA simply using the fatigue of cells, since the
mechanism of SSA is not clear and modeling it for it-
self is not our purpose). Accordingly if C? is strongly



Figure 3: Structure of the trainer network.

activated, the inhibitory signal from C] decreases for a
while, when CY is readily excited.
In mathematical terms,

d/UlL n n
T n —; +Zpij8j +Zqij$j
j=1 j=1
—erj—i-ari—nr;‘, (7)
J#i
LR f(vi)a (8)
ri = ((—e)ri, (9)
de;
Nd_et = —e; +ury, (10)

where v; denotes the potential of CY, p and o represent
the efficiency of lateral inhibition and self-excitation,
respectively, n is the input weight from the recency
cell, and ¢ and ¢ are positive constants.

This network generates the learning signal as fol-
lows. First, when N> receives an external input pat-
tern, say A, it emits a pattern a encoding A, and Vi is
trained so that a state close (in the sense of the vector
direction) to the current learning signal » = a can be
a stable attractor. Then if Ny receives a pattern B in
the next trial, it emits a different pattern b that was a
small correlation with a because of the adaptation ef-
fect of the recency cells. Since this effect decreases with
time and does not disappear immediately, the output
patterns c, d, and so forth of Ny corresponding to the
input patterns C, D, and so forth have some decreasing
degree of correlation with a.

At the same time, the synaptic weights p;; are mod-
ified according to

o dpi;
dt

where a9 is a positive constant, which makes the input
signal to N5 similar to the current learning signal. Be-

= —pij + Qor;S;, (11)
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Figure 4: Responses of the units to each input pattern.

cause of this effect, the degree of correlation between a
and b gradually increases to a certain value by repeat-
ing the same learning process.

4. COMPUTER SIMULATIONS

We carried out computer simulations on the model with
1000 units. First we prepared 100 patterns that were
1000-dimensional vectors with 10% of the elements be-
ing 1 and the rest 0, and trained the model by feeding
the patterns one by one for 47 for each pattern. The
parameters were

7/ = 500007, 7/ = 607, 0 = 3.0,w* = 10,

a1 = 50, Qg = 0.5, ﬁl = 25, ﬁg = 50,

~v=0.05,( =0.9,.=0.8, ¢c=10.

After training, we examined the response of the
units of Vy. Fig.4 displays the responses of some units
to the 100 learned patterns, where units with various
types of pattern selectivity can be seen; that is, some
units respond strongly to only a few patterns and mod-
erately to their neighboring patterns, and others show
the same level of response to a long sequence of pat-
terns. It should be noted that neurons of both types of
response are actually observed in monkey IT.

We analyzed this simulation data in the same way
as in Miyashita’s study [1]. The result is shown in
Fig.5, where correlation between the response to an in-
put pattern and that to neighboring patterns is plotted
by the solid line; the broken line represents the I'T neu-
rons (adapted from [1]). We see that the simulation
result agrees well with the empirical data.

Finally, to examine the learning process of implicit
association, we calculated the correlation between re-
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sponses to adjacent patterns for every cycle of training.
For comparison, we repeated simulations in the cases
that e; = 0, or the recency effect was removed, and
in the case that Ny has no synaptic plasticity. Fig.6
shows the result, where the solid line indicates the in-
tact model, and the broken and dotted lines indicate
the cases without the recency effect and without synap-
tic learning of Ns, respectively. As is evident from
this figure, no implicit association phenomenon was ob-
served without the recency effect cells; even with the
recency effect, if Ny does not have synaptic plastic-
ity, the degree of correlation does not increase much.
This suggests that both the recency effect and synaptic
learning in PRh are important for implicit association
learning in TE.

5. CONCLUDING REMARKS

Based on the findings on the rhinal cortex, we have
constructed a neural network model that forms implicit
association, and have shown that it agrees well with the
empirical data on IT neurons. This model is superior

to other theoretical models in that it matches physio-
logical evidence more closely, particularly the fact that
the implicit association phenomenon in TE disappears
when the rhinal cortex is removed. Another advantage
is that this model can learn and perform a PA task
and thus gives a unified theory of implicit and explicit
association learning processes.

Empirical verification of the model remains for fu-
ture study as well as the development of a model for
recency neurons based on a more plausible mechanism.
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