Recognition of Spatiotemporal Patterns by Nonmonotone Neural Networks
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Abstract

A neural network model that recognizes spatiotemporal pat-
terns without expanding them into spatial patterns is pre-
sented. This model forms trajectory attractors in the state
space of a fully recurrent network by a simple learning algo-
rithm using nonmonotone dynamics. When a spatiotemporal
pattern is inputted after learning, the network state is at-
tracted to the corresponding learned trajectory and the in-
complete part of the input pattern is restored in the input
part of the model; at the same time, the output part indicates
which spatiotemporal pattern is being inputted. In addition,
this model can recognize the learned patterns correctly even
if they are temporally extended or contracted.

1 Introduction

Neural networks for pattern recognition usually deal with
a spatiotemporal pattern by expanding it into a spatial
pattern using time-delay filters [Tank and Hopfield, 1987]
or multilayer delay units [Waibel, 1989]. This method,
however, has some drawbacks such that the temporal
length of recognizable patterns is limited to the maximum
delay time and that temporal extension and contraction
is difficult to handle.

Another conventional way to recognize spatiotemporal
patterns is to apply an advanced learning algorithm, such
as the temporal back-propagation algorithm, to recurrent
networks. Those algorithms, however, are quite compli-
cated and require a long time for learning. Besides, they
do not work well when the network acts asynchronously
or time-continuously, unless the network size is small
enough. This is because recurrent networks with con-
ventional type dynamics can hardly make a stable and
continuous state transition, since virtually only point at-
tractors which are isolated from each other can be em-
bedded in them [Morita, 1996].

On the other hand, a nonmonotone neural network,
namely a recurrent network whose dynamics are modi-
fied so that each neuron has nonmonotonic input-output
characteristics, not only possesses high memory capabili-
ties [Morita, 1993], but also can stably vary its state along
a continuous trajectory which is a string-type attractor.
Moreover, such trajectory attractors can be embedded
by simple learning based on the covariance rule [Morita,

1996]. Using these properties, we can formulate a new
principle of spatiotemporal pattern recognition that does
not require synchronization or time-delay mechanisms.
Our purpose in this paper is to present a basic model
based on such a principle and show its potentiality.

2 Principle

2.1 Structure and Dynamics

This model has a simple structure composed of n neurons
with mutual connections. These neurons are divided into
two groups, input and output parts, though all neurons
obey the same dynamics and learning rule. For conve-
nience, we give serial numbers to the neurons such that
neurons 1 to k are the input part and k£ + 1 to n are the
output part.
Dynamics of the network are expressed by

du,‘ ~

j=1

where u; is the potential of neuron 4, w;; is the synaptic
weight from neuron j, 2; is the external input, and 7 is a
time constant. The output y; is given by

yi = flui), (2)

where f(u) is a nonmonotonic function as shown in Fig. 1.
We use, as the nonmonotonic output function,
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Fig. 1. Nonmonotonic output function.



where ¢, ¢/, h and k are constants (we substitute ¢ = 50,
c =10, h = 0.5, k = —1 in the experiments described
later).

Since the polarity of u; is important in nonmonotone
neural networks, we consider z; = sgn(u;) and treat
the vector @ = (z1,...,z,) as the network state, where
sgn(u) =1 for u > 0 and —1 for u < 0.

The network state x at an instant is represented by a
point in the state space consisting of 2" possible states.
When « changes, it almost always moves to an adja-
cent point in the state space because z; changes asyn-
chronously. Consequently, = leaves a track with time,
which we call the trajectory of x. Similarly, we call
Tin = (1,...,2) and Tout = (Tg41,...,Tn) the states
of the input and the output parts, respectively, and con-
sider the trajectories of @;, and @, in the state space of
each part.

2.2 Learning

Let s'(t),...,s™(t) be m spatiotemporal patterns to be
recognized, where s = (sf,..., st). We assume that the
elements st are £1 and change asynchronously. Then we
can consider m trajectories corresponding to s* in the k-
dimensional pattern space regarded in the same light as
the state space of the input part. These trajectories may
intersect or overlap with one another.

We perform learning so that the state @, of the out-
put part becomes a target state S* = (s} 4, - - .,sk) when
the spatiotemporal pattern s* is inputted into the input
part. The learning algorithm is as follows.

First, we create a learning signal vector r = (r1,...,7,)
with binary elements (r; = +1). The learning signal ri,
corresponding to the input part is s*, that is, r;, = s!
for ©+ < k. The learning signal 7., corresponding to
the output part is a spatiotemporal pattern changing
gradually from a static pattern O to S*, where we as-
sume O = (—1,...,—1) without losing generality. Since
r is an n-dimensional binary vector, as well as =, r
is regarded as moving in the state space of the net-
work from (s#(0),0) = (s{(0),...,s%(0),—1,...,—1) to
(s*(T),S*), where T is the temporal length of s*.

Next, we give an initial state z = (s#(0),0) and in-
put 7 in the form z; = A\;r; to the network while it acts
according to Equation 1. Here, \; denotes the input in-
tensity of r;, which is a constant \;, for the input part
(1 < k) and a variable Aoy decreasing with the process of
learning for the output part (i > k).

We simultaneously modify all synaptic weights w;; ac-
cording to

dt
where 7/ denotes a time constant of learning (7' > 7) and
a is a learning coefficient. Since performance of learning
is better when « is a decreasing function of |u,|, we put
a = o'z;y;, &' being a positive constant.

When r is moving in the state space,  follows slightly
behind, roughly along the same trajectory. When »

= —w;; + ary;, (4)

7

reaches the end, we keep r = (s#(T), S*) and continue
modifying w;; until  comes close enough to .

We apply this procedure to all u, and repeat it over
some cycles, gradually decreasing Aout. If Zout can reach
a state near S* even when A,ut = 0, then the learning is
completed.

2.3 Recognition

By the above learning, the trajectories of & become at-
tractors of the dynamical system formed by the nonmono-
tone neural network [Morita, 1996]; that is, there exist
m trajectory attractors in the state space after learning.
Using this, the spatiotemporal patterns are recognized as
follows.

Let us assume that s’ = (s{,...,s}) is an input pattern
made by transforming (e.g., adding noise to) s! and s!
is 1, —1 or 0. We input it to the model in the form
z; = AinsSt (1 < k). To the output part, we give the initial
state O and input nothing (z; = 0) thereafter.

When s’ is inputted in this way, x is attracted to the
nearest trajectory attractor that is thought to correspond
to s'. Consequently, it is expected that the output state
Xy becomes nearly equal to S' when we finish inputting

s’

3 Computer Simulation and Discussion

To confirm the above principle, we carried out computer
simulations on the model with 300 input and 200 output
neurons (k = 300, n = 500).

Four spatiotemporal patterns s' = {ABC}40,, 8° =
{ABD}40.,—, 83 = {DAC}40-,— and 84 = {DBC}40-,— were
used in the experiment, where A, B, C and D are k-
dimensional binary vectors selected at random; {ABC'}
represents the shortest path from A via B to C, and
{ABC}r denotes a spatiotemporal pattern whose trajec-
tory is {ABC} and temporal length is T. The target
states S1, S2, S® and S* were selected at random, but
S! and S? were selected such that they have a similarity
of 0.5, where similarity is defined by the direction cosine
between two vectors. The reason we make S' and 52
similar is described below.

After finishing 10 cycles of learning, we inputted var-
ious patterns and examined the behavior of the model.
The parameters were o' = 2, 7 = 50007 and \;, = 0.2;
Aous decreased by degrees from 0.2 to 0.

3.1 Recognition Process

Figure 2 shows a process of recognition when part of s!
was input. Specifically, 2; = 0.2s} for half elements of
the input part that are randomly chosen and z; = 0 for
the other half; at ¢t > 407, z; = 0 for all 7. Similarities
(direction cosines) between @, and S* denoted by ¢(S*)
are plotted in the top graph and those between x;, and A
to D are in the bottom one. The abscissa is time scaled
by the time constant 7.

The similarity ¢(A) between «;, and A increases very
rapidly from the initial value 0.5 to more than 0.9 and
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Fig. 2. A process of recognition. Spatiotemporal pattern
s! is inputted with 50% elements blank.

then decreases gradually. In this process, ¢(A) + ¢(B)
is constant and is nearly equal to 1, which indicates that
@iy is moving along the path {AB}. We also see that
x;, ~ B at t = 207 and x;, ~ C at ¢t > 407 and that the
whole of s! is restored in the input part.

On the other hand, the similarity ¢(S') between oy
and S! (thick line) increases consistently with time and
Tous ~ ST at t > 407. This means that the model has
correctly recognized the input pattern as s'. We should
note that the trajectory {ABC} of s! overlaps every-
where with other trajectories and thus s' cannot be dis-
tinguished by the instantaneous input pattern at any mo-
ment.

We should also note that ¢(S') and ¢(S?) rise in the
same manner while ¢ < 257 and rapidly separate at
t ~ 307. This indicates that x,,; moves in the mid-
dle of trajectories {OS'} and {OS?} at first and then
approaches {OS'} when x;, approaches C after passing
through B.

This process is schematically shown in Fig. 3, where the
n-dimensional state space of the network is represented
three-dimensionally. Two figures (a) and (b) depict the
same thing from different angles. The origin represents
the initial state € = (A4, O) meaning x;, = A and ,u =
O. The thick line represents the trajectory of  and the
broken lines represent the trajectories r! and r2 of the
learning signal for s' and s2. The gray lines represent
the projection onto the x1—z2 or z3—x4 plane, that is, the
trajectories in the state space of the input or output part.

If we observe only the input part, the two trajecto-
ries r! and 7?2 overlap in their first half and then diverge
in their second. On the other hand, the trajectories in
the output part diverge at the starting point. Thus as a
whole, ! and r2 are separate but rather close in the first
half.
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Fig. 3. Schematic of the recognition process. (a) z1-z
plane represents the input part, and 3 4 axis the output
part; (b) x1 2 represents the input part, and xs—x4 the
output part.

The nonmonotone neural networks have a property
that when some attractors exist nearby, states lying be-
tween them are comparatively stable [Morita, 1996]. In
other words, the energy landscape of the network has a
“flat” bottom between neighboring attractors because at-
tractive force is smaller near attractors (note that in the
case of conventional neural networks, the energy land-
scape is “sharp” at attractors). Consequently, while x;,
is moving along the common path {AB}, xout moves in
the middle of {OS'} and {0S5?}.

As x;, departs from B toward C, the distance from
x to r? increases rapidly whereas that to ! does not
increase to such an extent, so that & cannot remain in
between the two. As a result, = is attracted to r! and
Zout approaches S1.

We can see from the above discussion why a spatio-
temporal pattern {OS*}r, rather than a static pattern
S#, should be used for the learning signal 7. That is,
if 7ot is a static pattern, r! and r? are far apart over the
entire path and thus x is attracted to either of the two
soon after starting from the origin; once x is attracted to
rl, for example, & can hardly transfer to r2 even if x;,
goes along {BD} afterwards.

From similar reasoning, if s' and s? are identical (or
very similar) in their first part, the corresponding target
states S! and S? should be similar so that the distance
between r! and r? is decreased. Then there is a less pos-
sibility that « will be attracted to r# before sufficient
information is inputted into the model, and even if it oc-
curs, x can transfer to the correct trajectory more easily.

2

3.2 Recognizing Patterns with Blank Sections

The trajectory attractor formed by the above learning not
only has a strong flow surrounding it that runs into it, but
also has a gentle flow that moves as fast as » along the
trajectory [Morita, 1996]. Accordingly, this model can
recognize a learned spatiotemporal pattern even if the
input pattern has some blank sections.



Fig. 4. Behavior of the model when some temporal sec-
tions of the input pattern are omitted. No external input
is given while 107 < ¢t < 307 and ¢ > 407.

As an example, we inputted the first quarter of s2 (from
A to the midpoint between A and B) for 0 < ¢t < 107 and
then cut off the input. Figure 4 shows the behavior of
the model in the same way as shown in Fig. 2, but the
thick line represents ¢(S2). We see that the movement
of x is roughly the same as that in Fig. 2 for 107 < ¢t <
207 although there is no external input. However, when
x;, passed through B and slightly approached C and D,
x stopped. This is thought to be an equilibrium state
in which the attracting forces from multiple attractors
balance out.

Then we inputted the third quarter of s? (from B to
the midpoint between B and D) for 307 < ¢t < 407, and
cut off the input again. We see that x is attracted to r?
and finally comes close to (D, S?).

In this way, this model complements the blank sections
of the input pattern and recognizes it correctly, provided
that no other trajectory attractors exist near the blank
sections.

3.3 Recognizing Patterns with Temporal Exten-
sion and Contraction

As described above, & basically moves at the same pace
as that in learning after being attracted to the learned
trajectory. However, if s* is inputted at a different pace,
or s’ is a temporally extended or contracted pattern of
st x;, follows the input pattern unless the pace is too
fast. Also, ..t keeps pace with x;, and approaches S*.
Figure 5 shows the recognition process when s® was
inputted at double the pace, or s’ = {DAC}a0,. We see
that the input pattern is correctly recognized, though the
transition of @, is slightly delayed. In the same way, this
model can recognize temporally extended patterns.
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Fig. 5. Behavior when a learned pattern is inputted at
a different pace. The temporal length T of the input
pattern is contracted by half (T' = 207).

4 Concluding Remarks

We have described a model which can recognize spatio-
temporal patterns by the use of trajectory attractors
formed in a nonmonotone neural network. This model not
only contains many interesting features, but also seems
much more similar to the brain in its working principle
than the conventional models of spatiotemporal pattern
recognition.

The model described in this paper is a basic one and
there is much room for further development. For exam-
ple, to recognize more complex patterns, we can intro-
duce a middle part or hidden neurons between the input
and output parts [Morita and Murakami, in preparation].
Theoretical analysis and application to speech recognition
are also subjects for future study.
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