Recognition of Spatiotemporal Patterns Using a

Nonmonotone Neural Network with Hidden Neurons

Satoshi Murakami t, Masahiko Morita TTand Naoto Sakamoto 7
Email:mare@bcl. esys.tsukuba.ac.jp

tDoctoral Program in Engineering, University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan
tTInstitute of Information Sciences and Electronics, University of Tsukuba
Tsukuba, Ibaraki 305-8573, Japan

ABSTRACT

It has been shown that a nonmonotone neural network model
can recognize spatiotemporal patterns without expanding
them into spatial patterns. We improve the recognition abil-
ity of this model by introducing hidden neurons. We also
show a simple method of training the hidden neurons. Com-
puter simulation shows that this model can recognize com-
plicated spatiotemporal patterns.
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1. INTRODUCTION

We previously proposed a nonmonotone neural net-
work model which recognizes spatiotemporal patterns
without expanding them into spatial patterns [1]. This
model has simple structure and learning algorithm and
can recognize learned patterns even if they are tempo-
rally extended or contracted.

However, this model works inadequately unless the in-
put patterns have simple structures, that is, their tra-
jectories in the pattern space are rather short and not so
much intertwined. This is because the input and output
patterns cannot be directly associated when they are too
much different in structure.

To solve this problem, we introduce hidden neurons to
the model. Due to the hidden neurons making an inter-
mediary state transition between the input and output
neurons, it is expected that the model can recognize long
complicated spatiotemporal patterns.

We also develop a new method of training hidden
neurons, since conventional methods such as the back-
propagation algorithm are not applicable to this model.

2. PRINCIPLE
2.1 Structure of the Model
The structure of the model is shown in Fig. 1. The
network in the upper half learns spatiotemporal patterns
and recognizes them, which we call the recognition net-
work. This network has a simple structure composed of
n nonmonotone neurons with mutual connections same
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Fig. 1: Structure of the model.

as the previous model [1]. These neurons are divided into
three groups, input, middle and output parts, though all
the neurons obey the same dynamics and learning rule.
The input part receives a spatiotemporal pattern to be
recognized, and the output part represents the result of
recognition; the other is the middle part.

For convenience, we give serial numbers to the neurons
such that neurons 1 to k are the input part, k + 1 to [
are the middle part, and [ + 1 to n are the output part.

The network in the lower half of the figure generates
learning signals for the middle part. This network con-
sists of | — k ordinary monotone neurons, each of which
corresponds to a hidden neuron. The specific structure
will be described in Section 2.4.

2.2 Dynamics of the Recognition Network

Dynamics of the recognition network are expressed by

du,’
dt

Tl = —u Y wiyi + 2, (1)
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where u; is the potential of neuron 4, and w;; is the
synaptic weight from neuron j. z; is the external input,



Fig. 2: Nonmonotonic output function.

and 7 is a time constant. The output y; is given by

vi = f(w:), (2)

where f(u) is a nonmonotonic function as shown in
Fig. 2. We use, as the nonmonotonic output function,
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where ¢, ¢/, h and k are constants (we substitute ¢ = 50,
¢ =10, h = 0.5, kK = —1 in the experiments described
later).

Since the polarity of u; is important in nonmonotone
neural networks, we consider x; = sgn(u;) and treat
the vector = (x1,...,%,) as the network state, where
sgn(u) =1 for u > 0 and —1 for u < 0.

The network state « at an instant is represented by a
point in the state space consisting of 2" possible states.
When x changes, it almost always moves to an adja-
cent point in the state space because x; changes asyn-
chronously. Consequently, x leaves a track with time,
which we call the trajectory of . Similarly, we call
Tin = (T1,...,2k), Tmid = (Tgt1,---,2) and Toyy =
(Zi41,.-.,%,) the states of the input, middle and out-
put parts, respectively, and consider the trajectories of
Tin, Tmia and T,y in the state space of each part.

2.3 Learning Algorithm

Let s'(t),...,s™(t) be m spatiotemporal patterns to
be recognized, where s* = (sf,...,st). We assume
that the elements s! are +1 and change asynchronously.
Then we can consider m trajectories corresponding to
s* in the k-dimensional pattern space regarded in the
same light as the state space of the input part. These
trajectories may intersect or overlap with one another.

We perform learning so that the state @,y of the out-
put part becomes a target state S* = (sfﬁrl, ..., %) when
the spatiotemporal pattern s* is given to the input part.
The learning algorithm is as follows.

First,
(r1,...,r,) with binary elements (r; = £1). The learn-

we create a learning signal vector r =

ing signal ri, = (71,...,7%) corresponding to the input
part is s#, that is, 7, = s for ¢ < k. The learning
signal rout = (ri41,- .-
part is a spatiotemporal pattern which changes gradu-

,Tn) corresponding to the output

ally from a static pattern O to S¥, where we assume
O = (-1,...,—1) without losing generality. The learn-
ing signal 7r,,;q for the middle part is also a spatiotem-
poral pattern described later.

Since 7 is an n-dimensional binary vector, similarly to
x, r is regarded as moving in the state space of the net-
work from (s#(0),7%.,(0),0) to (s*(T),r".,(T),SH),
where T is the temporal length of s¥.

Next, we give an initial state z = (s*(0),r".,(0),0)
and input 7 in the form z; = \;r; to the network while it
acts according to Equation 1. Here, A; denotes the input
intensity of r;, which is a constant \;, for the input part
(1 < k) and variables Amig and Aoyt decreasing with the
process of learning for the middle (k < ¢ <) and output
(¢ > 1) parts.

We simultaneously modify all synaptic weights w;; ac-
cording to

,d’wi]‘
dt

where 7' denotes a time constant of learning (7' > 1)

= —wi; + ary;, (4)

and « is a learning coefficient. Since performance of
learning is better when « is a decreasing function of |u;],
we put a = a'z;y;, where o’ is a positive constant.
When r is moving in the state space, x follows slightly
behind, roughly along the same trajectory. When 7
reaches the end, we keep r = (s#*(T),r" . (T),S*) and
continue modifying w;; until & comes close enough to r.
We apply this procedure for all y, and repeat it over
some circles, gradually decreasing Amiq and Aout- If Tout
can reach a state near S* even when Anig = Aout = 0,

then the learning is completed.

2.4 Generation of the Learning Signal

The learning signal 7,,;q for the middle part should
satisfy the following conditions: (1) its trajectory is
shorter and simpler than that of ri,; (2) it reflects the
change of 7, to some extent; (3) it starts at a point near
O' = (—1,...,—1) which we use as the initial state of
the middle part.

These conditions are satisfied if the trajectory of rpn;q
has a middle property between those of ri,, and royt. It is
therefore thought that we can generate a desired learning
signal ry;q by mixing r;, and 7., using a randomly
connected network.

Concretely, we use the network as shown in the lower
half of Fig. 1. Each neuron receives r;, and 7., through



random synaptic weight a;; and b;;, and outputs the
element r; of rig (K < 4 < 1). To generate a smooth
trajectory without sharp fluctuations, we introduce a self
connection of a positive strength p to each neuron. In
mathematical terms,

k n
r; = sgn Za,’ﬂ‘j + Z biyri +pri |, (5)
j=1 j=l+1

where r; = —1 for t < 0.

The synaptic weights a;; and b;; are randomly de-
termined, but b;; should have a positive average so
that 7,9 may be near O’ at the initial state when
Tout = O. In the following experiments, b;; are nor-
mally distributed random numbers with mean 1/(n — 1)
and variance 1/(n — ), a;; are those with mean 0 and
variance 1/k, and p = 1; these values are determined by
several trials.

2.5 Method of Recognition

By the above learning, the trajectories of & become at-
tractors of the dynamical system formed by the recogni-
tion network [2]; thus, there exist m trajectory attractors
in the state space after learning. Using this, spatiotem-
poral patterns are recognized as follows.

Let us assume that s’ = (s}, ..., s}) is an input pattern

I and

made by transforming (e.g., adding noises to) s
that s} is 1 or —1. We input it to the model in the form
zi = Ains; (1 < k). To the middle and output parts, we
give the initial states O’ and O, respectively, and input
nothing (z; = 0) thereafter.

When s’ is inputted in this way, « is attracted to the
nearest trajectory attractor that is considered to corre-
spond to s'. Consequently, it is expected that the output
state €o.t becomes nearly equal to S* when we finish in-
putting s', which means the model recognizes the input

pattern s’ as s'.

3. COMPUTER SIMULATION

To examine the behavior of the model, we carried out
computer simulations with 400 input, 600 hidden and
200 output neurons.

We prepared 21 spatiotemporal patterns shown in Ta-
ble 1. These patterns are formed by connecting 7 static
patterns A-G which are 400-dimensional binary vectors
selected at random; {ABECD } represents the shortest
path from A via B, E, C to D, and {ABECD }, is the
spatiotemporal pattern whose trajectory is {ABECD }
and temporal length is 7. We set T' = 807 in the exper-
iment. The target states S',...,S82! of the output part

Table 1: Spatiotemporal patterns used in the experi-
ment.

{ABECD}r {ADACG}r {AEGFA}r
{BACAF}r {BEFGF}r {BGCGF}r
{CEABD}r {CEACA}r {CGBAB}r
{DAFGE}r {DBAFB}r {DCDEC}r
{EDGEC}r {EGABD}r {EGEFE}r
{FBDAE}r {FBGFC}r {FGFCB}r
{GCECF}r {GDADE}r {GFAEF}r

are selected at random; however, for s#* and s#2 having
the same trajectory in the first v quarters, we selected
S#1 and S#2 so that they would have a correlation of
v/4.

After 15 cycles of learning, we inputted various pat-
terns and examined the behavior of the model. The pa-
7" = 400007 and )\in = 0.2; )\mid
and Aoy were decreased by degrees from 0.2 to 0.

rameters were o' = 2,

3.1 Recognition Process

Figure 3 displays a process of recognition when a spa-
tiotemporal pattern {C'E'A'C' A’ },. is inputted with in-
tensity 7y, = 0.2, where A, C' and E' are vectors con-
taining 50% noise (100 out of 400 elements selected at
random are reversed).

Similarities (direction cosines) between @o. and S¥
denoted by dout(S*) are plotted in the top graph, and
those between x;, and A-G denoted by d;, (A)—din (G)
are in the bottom one. The middle graph shows a change
of @4, where similarities between @m;q(t) and rmiq(t)
used in learning are plotted. The abscissa is time scaled
by the time constant 7.

In the bottom graph, the similarity d;,(C) between
i, and C increases rapidly from the initial value 0.5 to
more than 0.8, and then decreases gradually according
to the increase of the similarity d;,(E), which indicates
that @, is moving along the path {CE}. We see that
i, ~ Aatt =407, x;, ~C at t = 607 and x;,, ~ A
at t > 807 and that s® = {CEAC A} is restored in the
input part.

In the middle graph, x,,;q moves along a middle trajec-
tory between r7 ;, corresponding to s” = {CEABD },.
and 8., at t < 407. This is because s” and s® are the
same in their first half and thus »7 ;, and 8, are rather
close to each other. Thereafter, xn;q departs from 'rfnid
and approaches 78 ;.

In the top graph, we see that d,.:(S®) increases con-
sistently with time, and finally .. reaches S®. This
indicates that the model has correctly recognized the in-
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Fig. 3: A process of recognition.

put pattern as s8.

Another example of recognition is shown in Fig. 4,
where a vague pattern {(AD)E'(AG)F'(AC)}, is in-
putted. Here (AD) denotes a vector lying midway be-
tween A and D; (AG) and (AC) are also middle vectors.

In the middle graph, x;, lies in between A and D

for t < 107, when @,,;g moves in the middle of tra-

jectories r1.. 2., and r3.,. However, as xi, ap-
proaches E, @4 is attracted to 2., corresponding to
s3 = {AEGF A}, departs from the other r*., and z
moves along the trajectory of 3 thereafter. As a result,
Xyt reaches S3, that is, the model recognizes the input
pattern as s°. It should be noted that when (AG) and
(AC) are inputted, G and A are restored in the input
part, respectively, clearly demonstrating an effect of the

feedback signals from the middle and output parts.

4. CONCLUDING REMARKS

We have described a nonmonotone neural network
model with hidden neurons and proposed a simple
It has been
shown that this model can recognize spatiotemporal pat-

method of training the hidden neurons.

terns even if they are long and complicated or contain
much noise.
Moreover, this model does not require special mecha-
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Fig. 4: Behavior when a vague pattern is inputted.

nisms such as delay circuits. Accordingly, we think that
this model is much more similar to the brain in its work-
ing principle than the conventional models of spatiotem-
poral pattern recognition.

There is much room for further development in this
model. For example, this model is thought to be appli-
cable to speech recognition. Theoretical analysis is also
a subject for future study.

References

[1] M. Morita and S. Murakami, “Recognition of Spatiotem-
poral Patterns by Nonmonotone Neural Networks”,

Proc. ICONIP’97, Vol. 1, pp.6-9 (1997).

[2] M. Morita, “Memory and learning of sequential patterns
by nonmonotone neural networks”, Neural Networks,
Vol. 9, 8, pp.1477-1489 (1996).



