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Abstract

Neurons related to pair-association memory
have been found in the inferotemporal cortex of
monkeys, but their activities do not accord with
existing neural network models. The present pa-
per describes a neural network model consisting
of excitatory-inhibitory cell pairs, which recalls
paired patterns based on a gradual shift of the
network state. It is demonstrated by computer
simulations that this model agrees well with the
observed neuronal activities.

1. Introduction

In the inferotemporal cortex of monkeys, in-
teresting neuronal activities related to pair-
association memory have been reported [1].
This finding is very important in considering
how long-term memories are structured and
retrieved in the brain.

This empirical data, however, cannot be ex-
plained by existing neural network models,
since conventional dynamics of artificial neu-
ral networks do not accord with a gradual
change in sustained neuronal activities.

In the present paper, we construct a first-
step model of the pair-association memory
consistent with the above finding.

2. Pair-association neurons in the
monkey inferotemporal cortex

Sakai and Miyashita [1] studied inferotem-
poral neurons of monkeys by the following ex-
periment.

They first generated many pairs of figures,
and trained monkeys to associate paired fig-
ures with each other. Then they measured
neuronal activities in a delayed matching task,
where one of the paired figures (cue figure)
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Fig. 1: Illustration of transition in the firing
pattern during the recall process.

is presented for a short time and the monkey
judges whether the figure presented after a de-
lay period is the match (target figure) or not.

The result was basically the same as in the
previous study by Miyashita and Chang [2],
where the monkey memorized figures sepa-
rately and sparse coding was found to be used
for representing learned figures. However, two
kinds of neurons exhibiting distinctive activ-
ities, called “pair-coding” and “pair-recall”
neurons, were newly observed.

The former shows a selective response to
both figures of a pair and exhibits a sustained
activity during the delay period. The latter
shows no response to the cue figure, but grad-
ually increases its activity during the delay pe-
riod and exhibits the maximum activity when
the target figure is presented.

3. Interpretation and modeling

The above result can be interpreted as fol-
lows (see Fig. 1). Each figure is represented
by a sparse firing pattern of a neuron group.
This pattern does not depend on pictorial fea-
tures of the figure, but paired cue and target
figures are encoded into mutually similar pat-
terns and their overlapping part corresponds
to pair-coding neurons. During the delay pe-
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Fig. 2: Schematic energy landscape of a net-
work storing paired associates.

riod, the firing pattern changes gradually from
the cue-coding pattern to the target-coding
pattern; in this process, some neurons act as
pair-recall neurons.

To realize such a gradual shift of firing pat-
tern stably, it is thought that not only cue-
coding and target-coding states of the net-
work but also the entire path connecting them
should be smooth and attractive, or at the
bottom of a “gutter of energy”, as schemat-
ically depicted in Fig. 2. In this figure, the
z-y surface represents the state space of the
network and the z-axis represents the energy;
three gutters corresponding to three pairs are
drawn.

However, such a landscape can hardly be
formed by conventional artificial neural net-
works that usually have a rippled energy land-
scape [3]. This problem was first solved by
Morita [3] by improving network dynamics.
Specifically, it has been shown that if we in-
troduce neural elements with a nonmonotonic
activation function, the energy landscape be-
comes smooth and trajectory attractors are
easily formed.

Though nonmonotonic elements are biolog-
ically implausible, similar dynamics can be
realized by combining a few normal mono-
tonic elements as described below [4,5]. More-
over, this network accords with a broad dis-
tribution of sustained neuronal activities ob-
served in the monkey inferotemporal cortex
[2], which also is difficult to explain by the
conventional models [4]. On these grounds,
we use the following network for modeling the
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Fig. 3: Structure of the network.

pair-association memory.

4. Model

This model consists of pairs of excitatory
and inhibitory cells, as shown in Fig. 3. A pair
of cells surrounded by broken lines composes
a unit, where the excitatory cell C{" emits the
output of the unit and the inhibitory cell C;
sends a strong inhibitory signal to C;f. Both
cells receive recurrent inputs from other units.
In mathematical terms,

yi = D wgzi—0], (1)
j=1
d'Uq' ~ + *
T = —u,-—I—ZwZ-jxj—wiyi—l—zi, (2)
7=1

where x; and y; are the outputs of C;” and C;
respectively, u; is the potential, z; is the ex-
ternal input, wjj and w,; are synaptic weights
from the j-th unit to C’f and C;, respectively,
w] represents the efficiency of the inhibitory
synapse from C; to C;', and @ is a positive
constant.

The activation function f(u) of each cell is
a monotonic sigmoid function increasing from
0 to 1. However, the input-output character-
istics of the unit are nonmonotonic; that is,
the output = increases with the total input v
when v is small enough, but decreases when v
becomes large and the inhibitory cell emits a
large output.



4.1 Learning Algorithm

Learning is performed using a binary vector
r = (ry,...,r,) as a learning signal, which
specifies a state to be memorized [5]. Specifi-
cally, we input 7 in the form z; = Ar;, where A
denotes input intensity, and modify synaptic
weights according to

dw;"-
7! dt] = —w;;- + ar;x;j, (4)
,dwi_j _
o = Wiy~ b+ iz + . (5)

Here «, (1, and (2 are learning coefficients,
v is a positive constant representing lateral
inhibition among units, and 7’ is a time con-
stant of learning (7' > 7). The coefficient «
may be a positive constant, but the learning
performance is better when « is a decreasing
function of z;; #1 and (2 are constants which
satisfy 0 < (1 < fa.

If the i-th unit receives a learning signal

(r; = 1) and its output z; is small (z; <
B1/fB2), then wy; is reinforced and w;; is de-

pressed, thus the output z; increases. When
”
thus z; is restrained from increasing exces-
sively. If r; = 0, then only wy;; is reinforced,
thus z; decreases.

It should be noted that the term fax;x;, or

reinforcing w;; according to the final output z;

of the unit, is indispensable for maintaining
Also, the
term ~y or lateral inhibition plays an important

x; becomes large, however, w; . is reinforced,

the nonmonotonic characteristics.

role in maintaining the total activity of units
at a low level, allowing sparse coding.

Through this learning, the network energy
is lowered around the state specified by =, and
thus the state becomes a point attractor if r
is constant. If r changes successively at a
slow pace, however, a gutter is engraved in
the energy landscape along its track. In addi-
tion, a gentle flow in the same direction as the
movement of = is generated at the bottom of
the gutter. Consequently, the network state
moves along the trajectory of » without ex-
ternal inputs only if a proper initial state is
given [5].
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Fig. 4: Recall process when a cue A is given.

5. Computer Simulations

In this study, we examine whether the
model can explain the above empirical data
when an appropriate learning signal is exter-
nally given. For this purpose, we carried out
computer simulations with 1000 units.

We prepared 20 pairs of patterns that are
1000-dimensional sparse vectors with 10% of
elements being 1 and the rest 0. These
patterns were randomly generated and have
small correlations between different pairs, but
paired patterns were selected such that they
share 25% of the elements taking 1.

5.1 One-way recall

In the first simulation, one of a pair was
always used as a cue-coding pattern and the
other as a target-coding pattern. We then pro-
duced a spatiotemporal pattern which varied
successively from the cue-coding to the target-
Using this as
the learning signal r, we performed the above
learning over 15 cycles, gradually decreasing

coding pattern for each pair.

the input intensity A of ».

Figure 4 shows a recall process after learn-
ing, which indicates the time course of change
in the output vector & = (z1,...,2,) when a
cue-coding pattern A is given during the cue
period (0 < t < 37) and no input is given
thereafter. The ordinate of the graph is the
similarity (direction cosine) between x and A

or B (the target-coding pattern), and the ab-
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Fig. 5: Response of each unit to various in-
puts.

scissa is time scaled by the time constant 7.

We see that the output vector x varies grad-
ually and B is recalled with a small error. In
the same manner, it was confirmed that the
correct target is recalled for all pairs.

Figure 5 shows the outputs of 20 units se-
lected randomly out of the units showing some
response, where five trials are performed ev-
ery 30 7. In each trial, cue A or C is given
in the cue period and pattern A, B or D (tar-
get to C) is given in the choice period after a
delay. The input level (average of z;) is low-
ered in the choice periods and in the intervals
between trials.

We see that many units exhibit a large out-
put in the choice periods of the first and fourth
trials in which the correct target is inputted,
whereas the outputs are small when an unre-
lated pattern is inputted in the third and fifth
trials; in the second trial, some units emit a
large output when the cue A is re-inputted in
the choice period, but they are few in num-
ber. Accordingly, we can clearly discriminate
between correct and incorrect targets by the
histogram of outputs, which indicates that the
network is able to distinguish the correct tar-
get.

We also see that some units (e.g., nos. 8 and
10) respond to both cue and target and sustain
a large output during the delay period, and
others (e.g., nos. 4 and 6) show no response
to the cue but strong response to the target
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Fig. 6: Paths of the learning signal.

with a gradually increasing output in the delay
period (note that the learning signal r; took
a binary value). These activities correspond
well to those of the pair-coding and pair-recall
neurons in the monkey brain.

5.2 Bidirectional recall

In the experiment by Sakai and Miyashita
[1], monkeys were trained to recall either fig-
ure of a pair, in other words, cue and tar-
get figures were not fixed but interchange-
able. However, we cannot realize such bidirec-
tional recall simply by giving the same learn-
This is because
the two paths of the learning signal  connect-

ing signal in reverse order.

ing paired patterns, for example from A to B
and from B to A, overlap with each other and
learning fails due to the interference between
them.

We thus modify the paths of r as shown in
Fig. 6; that is, we use spatiotemporal patterns
varying from A to B’ and from B to A’ for as-
sociation between A and B, where A’ and B’
are patterns with a moderate similarity to A
and B, respectively. Using the modified r, we
performed a simulation with the same condi-
tions as in the previous one (1000 units, 20
pairs) but learning was performed 20 times
for each direction. Patterns A’ and B’ were
selected randomly out of the patterns having
a similarity of 0.5 to A and B, respectively.

Behavior of the model for cues is shown in
Fig. 7 and Fig. 8. We see that the output vec-
tor & approaches the correct target whichever
pattern is given as a cue. Although the tar-
get is not completely recalled, the units cod-
ing the target exhibit a large response in the
choice period because x becomes close enough
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Fig. 7: Recall from A to B.

to the target pattern.

It should be noted that the similarity of «
to B’ (A’) first increases to 0.85 but decreases
thereafter, while that to B (A) increases con-
sistently. This indicates that x follows the
trajectory shown by the broken line in Fig. 6,
because of attractive force between the two
paths.

We confirmed that bidirectional recall is
possible for all the pairs, and that some units
exhibit similar activities to the pair-coding
and pair-recall neurons as seen in the previ-
ous simulation.

6. Concluding remarks

We have discussed the mechanism of pair-
association memory and demonstrated that a
neural network model consisting of pairs of ex-
citatory and inhibitory cells can explain the
neuronal activities observed in the monkey in-
ferotemporal cortex. This model uses a simple
learning rule and is biologically plausible. We
consider, therefore, that the model captures a
fundamental principle of the pair-association
memory in the primate neocortex.

However, we assumed in this paper that
an appropriate learning signal is given exter-
nally to the model. Thus, if our view is cor-
rect, such a learning signal must be generated
somewhere in the brain for the inferotemporal
cortex. If so, where and how is it generated?

We believe that the learning signal is gen-
erated through cortico-hippocampal interac-
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Fig. 8: Recall from B to A.

tions. This idea is supported by recent find-
ings of Miyashita et al. [6] that the above
pair-association neurons are not found in mon-
keys with lesions of the entorhinal and perirhi-
nal areas, which mediate mutual connections
between the temporal cortex and the hip-
pocampus. A revised model considering the
hippocampal system (including the parahip-
pocampal region) will be presented in the fu-
ture.
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