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Abstract - In the inferior temporal cortex of the
monkey, ‘pair-recall’ neurons which exhibit prospec-
tive activity for the target during the delay period of
a pair-association task have been found. To explain
this and other physiological findings, we previously
constructed a model of pair-association memory con-
sisting of two interactive networks. The present paper
reports that recent empirical data on the time course
of the pair-recall activity accord very well with the
prediction of our model. This strongly suggests that
trajectory attractors are formed in area TE, implying
that the learning signal necessary for forming them is
sent backward from the perirhinal cortex.

I. INTRODUCTION

In the visual system of the brain, information on the
shape of stimuli is sent from area V1 via areas V2, V4
and TEO to area TE (TE) in the inferior temporal cor-
tex (IT), where the shape is thought to be recognized,
and thence further transmitted toward the medial part,
namely, the perirhinal cortex (PRh), entorhinal cortex
and hippocampal body (Fig. 1). Among these, TE and
PRI are known to be deeply involved in stimulus—stimulus
association memory.

With regard to this, Sakai and Miyashita [1] reported
a key finding on the memory-related activity of IT neu-
rons. They trained monkeys on a delayed pair-association
(DPA) task, in which one of the pictures is presented as
a cue and the monkey must judge whether a test picture
presented after a delay interval is the paired associate
(target) of the cue or not, and recorded neuronal activity
during the task. One of the most important observations
was that some neurons, termed pair-recall neurons, ex-
hibited prospective activity; they do not response to the
cue, but gradually increase activity during the delay pe-
riod, showing the maximum activity when the target is
presented.

Such activity is not explained by conventional mem-
ory models using point attractor networks (e.g. [2]), and
We have in-
vestigated this problem and constructed a computational

the underlying mechanism was not clear.
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Fig. 1: Forward and backward pathways of visual signals in
the temporal lobe.

model of pair-association (PA) memory based on a trajec-
tory attractor network [3,4,5]. This model can not only
learn and perform a PA task in a biologically feasible man-
ner, but can also reproduce the activity of the pair-recall
neurons well. Moreover, assuming that the two compo-
nents of the model correspond to TE and PRh, it accords
with physiological findings, and makes some predictions
on the activity of TE neurons. These predictions, how-
ever, were not able to be verified by the empirical data
obtained from Sakai and Miyashita [1].

Recently, Naya et al. [6] recorded pair-recall neurons
more extensively and analyzed their temporal character-
istics to obtain striking data. In the present report, we
apply the same analysis to our model and compare the
results to examine the formation and recall mechanisms
of PA memory in IT.

II. THE MODEL OF
PAIR-ASSOCIATION MEMORY

In this section, we briefly describe our model of PA
memory (refer to [5] for a detailed description).
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Fig. 2: Block diagram of a model of pair-association memory.

A.  Structure and Dynamics

The model is composed of two interconnected neural
networks, association network Nj in which memories are
stored and trainer network N, which generates the learn-
ing signal required for memory formation (Fig. 2). The
output pattern = (z1,...,z,) of Ny is sent to Ny
and also fed recurrently into Ny, and the output pattern
.,1n) of Ny is fed back to Ny as the learning
signal. The external input pattern s = (s1,..., sm) is fed
into Na; although Nj should receive s via Ny, the direct
input path to Ny is omitted for simplicity.

T = (7‘1,..

The structures of networks Ny and N, are shown in
Fig. 3 and Fig. 4, respectively, and their dynamics are
described mathematically by
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where w;‘; and wy; are the synaptic weights from the j-th
unit to excitatory and inhibitory cells C’i"' and C; of the
i-th unit, respectively, w; represents the efficiency of the

Fig. 4: Structure of network Nj.

inhibitory synapse from C; to C;
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and p;; and g;; are
random weights of input synapses to the i-th cell C; of Ns;
u; and v; are the potentials of Ci+ and Cj, respectively, A
denotes the input intensity of 7, h is an offset, and 6, 7,
p, o and c are positive constants.

B. Learning

Learning of this model is performed by modifying the
synaptic weights of IV; according to

= fw;? + ar;z;, (7)

= —wj; —birixj + Powiz; +v,  (8)



while each cell of the model is running according to
Egs. (1-6) [7]. Here 7’ is a time constant (7' > 7), a,
B1, and B are learning coefficients (8; < (2), and « is
a positive constant representing the lateral inhibition be-
tween units. Coefficient « may be a positive constant,
but because the learning performance is better when « is

a decreasing function of z;, we adopt
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where k = (31/82 and o’ is a positive constant.

By repeating this synaptic modification several times, a
pattern ‘close’ (in the sense of the angle between pattern
vectors) to learning signal r becomes a point attractor in
the state space when r stands still; however, a successive
attractor is formed along the track of 7 if r varies contin-
uously. In addition, by r leading the move of x, a gentle
flow from x toward r or in the movement direction of r
is produced. A string-shaped attractor with such a flow
is called a trajectory attractor [8].

A pair of patterns is associated by sequentially feeding
them to the model and performing the above described
learning. For example, when a pattern A is fed to Ny
(s = A), Ny outputs a randomly transformed pattern a
(r = a); if the pair pattern B is then fed, interactions
between Ny and N, enable the output 7 of Ny to change
successively, drawing a track as schematically shown in
Fig. 5, to a pattern b’ near to a pattern b encoding B. In
the same way, when we input B and A, in that order, a
spatiotemporal pattern varying from b to a' is sent from
Ny to Ny. Consequently, trajectory attractors are formed
in N; along these tracks and the output pattern & comes
to shift automatically from a to b’ and b to a’ with the
input of A and B, respectively.

C. Correspondence to Physiological Data and Predic-
tions

The model after learning can not only perform the DPA
task, but also reproduce the activity of pair-recall neurons
in IT; in addition, it possesses two important properties.

First, it is presumed that networks N; and N> corre-
spond to TE and PRh, respectively. This presumption
agrees with the anatomical structure as shown in Fig. 1,
and also with the results of lesion studies. For example,
the monkey with lesions of the perirhinal and entorhinal
cortices cannot learn a PA task at all, although recogni-
tion of visual stimuli is intact and re-learning of a stimulus
set learned before the lesion is possible [9]. This suggests
that PRh is essential for PA learning but PA memories
are finally formed in TE, as assumed by the model.
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Fig. 5: Paths of the learning signal.

Second, the following characteristics of the pair-recall
neurons in TE are predicted.

(1) The onset time of the pair-recall activity during
the delay period will be widely diverse. This is a direct
consequence of the continuous state transition of network
N, along a trajectory attractor, since if the state jumps,
many units will change their output synchronously.

(2) The activity pattern of neurons when a picture is
presented as a cue will be substantially different from that
recalled during the delay period after presentation of the
paired picture, in other words, the code of the target will
be recalled only incompletely. This is derived from the
discrepancy between a and a' in Fig. 5, which is necessary
for forming two trajectory attractors in opposite direc-
tions with avoiding mutual interference.

In the following, we try to verify these predictions on
the basis of the empirical data from Naya et al. [6].

ITI. ANALYSIS OF THE TIME
COURSE OF RECALL ACTIVITY

The method and results of the analysis by Naya et al.
[6] are summarized as follows.

They trained monkeys on the same DPA task as Sakai
and Miyashita [1], and recorded neuronal activity during
the task from TE and area 36 (A36), a part of PRh ad-
jacent to TE. Subsequently, for each neuron exhibiting a
selective response during the delay period, a pair-recall
index (PRI) was calculated according to

(Gp|F(1) = (CIC,)(CIF())

PRI(t) = ~ —.
V(= (CIF(1))*)(1 - (CICy)?)
Here, F(t), C' and C}, denote vectors [fi(t),---, fi(t)],
[c1,---,¢r] and [cp(1y, -+, cpy], Tespectively, [ being the

number of learned pictures (I = 24 in their experiment),
fx(t) the activity (firing rate) at time ¢ when the picture k
is presented as a cue, cx and ¢, the cue activities when
the picture k or its paired associate p(k) is presented as
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Fig. 6: Time courses of the averaged PRI for population of
pair-recall neurons in TE and A36 (adapted from Naya et al.

[6])-

a cue, and (X|Y') indicates the correlation coefficient be-
tween X and Y. This index indicates how similar the
activity at time ¢ is to the response to the target, and is
normalized so that it may not exceed 1 and may be nearly
zero during the cue period; also it is not affected by the
difference in the activity level between the cue period and
the delay period.

Fig. 6 shows the time course of the population aver-
age of PRI, where the best-fit Weibull functions for the
averaged PRI(t) of the (a) TE and (b) A36 neurons are
plotted; solid lines indicate the average of all neurons,
whereas broken lines indicate the average of the neurons
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Fig. 7: Distribution of the TRT values for IT neurons (adapted
from Naya et al. [6]).

exhibiting a significant increase in PRI (5% significance
level). Here, a notable point is that the averaged PRI for
TE increased gradually for more than 500 ms. It is also
a very novel and important finding that although the cue
response is later in A36 than in TE (see Fig. 1), the in-
crease of PRI is considerably earlier, which we will discuss
in Section IV.

They subsequently obtained the transition time (TRT)
for each neuron which is defined as the time when PRI ()
reaches 50% of its maximum. Fig. 7 shows a cumula-
tive frequency histogram of the TRT values, where the
solid line and broken line indicate TE and A36, respec-
tively. The graph for TE increases gradually with TRT,
indicating that the onset time for the PRI(t) increase is
distributed nearly uniformly over a wide range.

We analyzed our model using the same method. Specif-
ically, after training the model with n» = 1000 on 20 pairs
of randomly generated patterns, we applied the DPA task
to the model and calculated PRI(t) for 100 randomly se-
lected units of Ni. Methods of the simulation and param-
eters of the model were the same as those in our previous
study [5], except that the input and delay periods were
slightly modified to facilitate the comparison with the em-
pirical data.

The results are displayed in Figs. 8 and 9. Fig. 8 shows
the averaged PRI in the same manner as Fig. 6, but time
(the abscissa) is scaled by the time constant 7 in Eq. (1)
and curve fitting is not applied. Fig. 9 shows a cumulative
frequency histogram of the TRT in the same manner as

Fig. 7.
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Fig. 8: Time course of the averaged PRI for the units of N; of
the model.

IV. DISCUSSION

Comparing Fig. 6(a) and Fig. 8, we see that the curves
of graphs for TE and the model are similar in form, but
the value of averaged PRI(t) in the former is about half
of that in the latter. This difference seems partly because
neurons that do not contribute to recall of the target may
possibly be included in the empirical data whereas such
units are not in the model. In fact, the graphs are quan-
titatively more similar if TE neurons without significant
change in PRI(t) are omitted (Fig. 6(a), broken line).

At the same time, the fact that the averaged PRI in TE
does not exceed 0.5 even after such an operation indicates
that the activity pattern, not only its level, recalled dur-
ing the delay period is substantially different from that
elicited by presentation of the target. Such a difference
has been inferred from the finding that recognition errors
occur most frequently when a nontarget test is similar
to the correct target [10], but the above data shows it
more directly and verifies the prediction (2) described in
Section II.

Next, as evident from a comparison between Fig. 7 and
Fig. 9, the TRT distributions for TE and the model agree
very closely. This is thought to be not simply a coin-
cidence but a reflection of the working principle of the
model, since a similar distribution was obtained when
simulations were repeated with different conditions. Ac-
cordingly, the empirical data is not only consistent with
prediction (1) in Section II, but also suggests that the
activity pattern of TE neurons changes successively in
the same course as that of the model, and furthermore,
that the change is brought about by the same mechanism,
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Fig. 9: Distribution of the TRT values in the simulation.

namely, trajectory attractors.

The argument that trajectory attractors are formed in
TE has another important ground. As described above, to
form a trajectory attractor in a network, a learning signal
which leads, and thus should precede, the state transition
of the network is required, and it is a main point of our
model that this learning signal is sent from Ny to IVj.
Since it is reasonably presumed that N, corresponds to
PRh, the marked finding shown in Figs. 6 and 7 that
the activity shift in A36 toward the target-coding state is
earlier than that in TE supports the model.

Here an argument may arise that it is not necessary
to form trajectory attractors in TE if the activity in A36
leads the state transition in TE. However, a view that
pair-association memories are stored not in TE but in
PRh only does not agree with the above lesion study of
PRh. Also, if TE contains only point attractors encoding
individual pictures and the target recall depends com-
pletely on A36 or other regions, the TRT distribution
for TE should not be so wide as shown in Fig. 7, since
the state during transitions between attractors is gener-
ally unstable and transient; in addition, the discrepancy
between target and recalled codes is not explained. We
believe, therefore, that it is the most reasonable interpre-
tation that trajectory attractors underlie the pair-recall
activity in TE.

V. CONCLUDING REMARKS

As described above, the empirical data on the pair-
recall neurons in TE agreed well with calculations per-

formed using our computational model. This strongly



suggests that trajectory attractors are formed in TE and
that the learning signal necessary for forming them is sent
backward from PRh.

However, the present model was constructed for the
purpose of explaining the activity of TE neurons but not
of PRh neurons, and is insufficient for a model of PRh.
As a matter of fact, curves in similar form to those in
Fig. 6(b) and Fig. 7 (broken line) are obtained if we cal-
culate PRI and TRT for cells of N2 using their outputs in
learning. Nevertheless, they are quite different in terms
of the origin of abscissa; that is, the averaged PRI for A36
begins increasing immediately after the cue presentation,
whereas PRI of N5 cells increases after the input of the
target pattern because Ny is currently not endowed with
any mechanism of target recall.

In connection with this, Erickson and Desimone [11]
demonstrated that the delay activity of PRh neurons re-
flects the cue at an early stage of training but it comes
to reflect the prospective target with long-term training.
Also, Tokuyama et al. [12] reported that BDNF (brain-
derived neurotrophic factor), which is thought to mediate
synaptic plasticity, was selectively induced in PRh during
PA learning. These findings imply that learning in PRh
is performed previous to or in parallel with the memory
formation in TE.

To fully explain the above data on A36, therefore, mod-
ification of the structure of Ny with introduction of synap-
tic plasticity will be necessary; also, the addition of an-
other network corresponding to the inner part of A36
(e.g., the entorhinal cortex) will possibly be required.
Such improvements of the model are a subject for future
study.
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