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Abstract

Neurons related to pair-association memory have
been found in the inferotemporal cortex of monkeys,
but their activities do not accord with existing neu-
ral network models. We have previously shown that a
neural network consisting of excitatory-inhibitory cell
pairs is able to explain these neuronal activities; how-
ever in order to form the memory, it required an exter-
nal learning signal. In the present paper, we supple-
ment this model with another network to generate the
learning signal. By simply inputting paired patterns
in order, this model forms pair-association memories
using the interaction between the two networks.

1. Introduction

In the inferotemporal cortex of monkeys, in-
teresting neuronal activities related to pair-
association memory have been reported [1]. This
finding is very important when considering how
long-term memories are structured and retrieved
in the brain, but such activities are difficult to ex-
plain by conventional neural network models.

We previously reported [2] that a network con-
sisting of pairs of excitatory and inhibitory cells
explains the above empirical data well provided
that an appropriate learning signal is given exter-
nally to the model. This learning signal is a spa-
tiotemporal pattern that is necessary to form the
memory. However, since no external learning sig-
nal is given to the monkey in the actual task, it
should be generated from stimuli in the brain.

To solve this problem, we modify our model by
adding a supplementary network, in which a pair
of input patterns is transformed into a spatiotem-
poral pattern. We also show by computer simula-
tion that this model has the ability to perform the
pair-association task.

2. Background

Sakai and Miyashita [1] studied the inferotem-
poral neurons of monkeys by conducting the fol-
lowing experiment.
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Fig. 1: Tllustration of transition in the firing pat-
tern during recall.

They first generated many pairs of figures, and
trained monkeys to associate paired figures with
each other. Then they measured neuronal activi-
ties in a delayed matching task, where one of the
paired figures (cue figure) is presented for a short
time and the monkey judges whether the figure
presented after a delay period is the match (target
figure) or not.

The results were basically the same as those
from aprevious study by Miyashita and Chang [3],
where the monkey memorized figures separately
and sparse coding was found to be used for repre-
senting learned figures. However, two kinds of neu-
rons exhibiting distinctive activities, called “pair-
coding” and “pair-recall” neurons, were newly ob-
served.

Pair-coding neurons exhibit a selective response
to both figures of a pair, and exhibit sustained ac-
tivity during the delay period. Pair-recall neurons
did not exhibit a response to the cue figure, but
gradually increase their activity during the delay
period and exhibit the maximum activity when the
target figure is presented.

The above result can be interpreted as follows
(see Fig. 1). Each figure is represented by a sparse
firing pattern of a neuron group. This pattern
does not depend on pictorial features of the figure,
rather, paired cue and target figures are encoded
into mutually similar patterns and the overlap cor-
responds to pair-coding neurons. During the delay
period, the firing pattern changes gradually from



Fig. 2: Schematic energy landscape of a network
storing paired associates.

the cue-coding pattern to the target-coding pat-
tern; in this process, some neurons act as pair-
recall neurons.

In order to realize such a gradual shift in firing
pattern stably, it is thought that not only the cue-
coding and target-coding states of the network,
but also the entire path connecting them should
be smooth and attractive, or at the bottom of an
energy gutter, as schematically depicted in Fig. 2.
In this figure, the z-y surface represents the state
space of the network, and the z-axis represents the
energy; three gutters corresponding to three pairs
are drawn.

Although it is difficult to form such a landscape
using conventional attractor neural networks, as
they usually have a rippled energy landscape [4],
we were able to realized it by introducing local in-
hibition cells [2], successfully reproducing similar
activities to those of the above inferotemporal neu-
rons. However, this model is insufficient because
we used a man-made spatiotemporal pattern as a
learning signal, and gave it externally to the net-
work.

For a neural network to automatically generate
an appropriate learning signal, it should change its
output pattern successively yet slowly while pre-
serving cue pattern information, which is difficult
for any single isolated network. We found, how-
ever, that this problem can be solved by utilizing
two interactive networks, as described in the fol-
lowing section.

3. Model

3.1 Structure

The model is composed of two interconnected
networks, as shown in Fig. 3. Memories are formed

Fig. 4: Structure of the storage network Vj.

in the storage network Ny; the network N, receives
the input pattern s and the output pattern x of
Nj, generates the learning signal r, and sends it
back to Nj.

The storage network Ny consists of pairs of ex-
citatory and inhibitory cells, as shown in Fig. 4.
A pair of cells surrounded by a broken line com-
prises a single unit, where the excitatory cell C;"
emits the output of the unit and the inhibitory cell
C; sends a strong inhibitory signal to C;. Both
cells receive recurrent inputs from other units. In

mathematical terms,
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Fig. 5: Structure of learning signal generation net-
work NQ.

where x; and y; are the outputs of C’i‘" and C;,
respectively, u; is the potential, z; is the external
input, w;; and w;; are synaptic weights from the j-
th unit to C;r and C;, respectively, w; represents
the efficiency of the inhibitory synapse from C; to
C’i+ , and 0 is a positive constant.

The activation function f(u) of each cell is a
monotonic sigmoid function that increases from 0
to 1. However, the input-output characteristics of
the unit are nonmonotonic, that is, output x in-
creases with the total input when input is small,
but decreases when it becomes large and the in-

hibitory cell emits a large output.

3.2 Learning signal generation network

The structure of network N is shown in Fig. 5.
This network consists of n cells, corresponding
one-to-one with the units of N;. The i-th cell C;
receives the input pattern s = (sq,. .., s, ) through
a synaptic weight p;; and outputs the learning
signal 7; to the corresponding unit of Ny. The
synaptic weight p;; takes a random value such that
N functions as a random transformation network.
Cell C; also receives feedback signal z; from every
unit of IV; through a random synaptic weight g;;.

This network is a kind of competitive network,
as C; has a self-excitatory connection and lateral
inhibitory connections. This permits only a few
cells to emit large outputs, with the outputs of
the other cells being almost zero. This indicates
that output pattern 7 is a sparse vector.
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Fig. 6: Paths of the learning signal.

In mathematical terms,

d’U‘ n n
Td—; = —U; + Zpiij + Zqijxj
j=1 Jj=1
—erj—l—am—i—h, (4)
i
ri = f (W)? (5)

where v; denotes the potential of C;, p and o
are positive constants representing the efficiency of
lateral inhibition and self-excitation, respectively,
and h is an offset.

3.3 Behavior of model

When we consider the behavior of the model in
learning, the interaction between networks N; and
Ny is important. Since the output 7 of Ny is the
learning signal for V7, generally x is similar to r.
When r moves, however, « follows slightly behind,
moving continuously at a limited rate even if r
jumps. Also, Ny tends to preserve its current out-
put because of the competitive property of cells,
whereas the input from N; through random con-
nections has an effect of driving the state of Ny
toward a certain direction, dependent on . Tak-
ing this interaction into account, let us consider
the case for which we input cue pattern A into the
model in the rest state (where the outputs of all
cells are almost zero) and input target pattern B
after a delay.

First, when input s = A is maintained for some
time, network N, outputs a, which is a randomly
transformed pattern of A, and after a short delay,
output « of N; becomes similar to a. This out-
put is fed back into N5, but it does not change r
significantly while s = A.

When the external input is paused and s = 0,
however, the effect of feedback becomes dominant
and r begins to move. This continues during the
delay period, with r gradually decreasing its mov-
ing rate to reach pattern a”, which is moderately
similar to a. Then, by inputting B, » moves slowly
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Fig. 7: Response of each unit to various input patterns.

toward b, which is the output pattern of Nz to
input B in the rest state, but does not reach b,
stopping at b’ (see Fig. 6).

In the same way, when we input B and A, in that
order, a learning signal starting from b via b” to a’
is generated. It should be noted that the feedback
from Nj to N, is important in separating the two
paths a — b’ and b — a’ as well as in regulating
the moving rate of r.

In parallel to the above process, IV; is trained
using r. Specifically, N; receives r in the form
z; = Ar;, where A denotes the input intensity, and
synaptic weights are modified according to

dw
! dt” = —w;; + ar;z;, (6)
,dwi_j _

T T Wi~ Pirizj + Bowizy +v.  (7)

Here «, (1, and (3 are learning coefficients, ~y is
a positive constant representing the lateral inhibi-
tion between units, and 7’ is a time constant of
learning (7' > 7). Coefficient & may be a positive
constant, but the learning performance is better
when « is a decreasing function of x;; #1 and (B2
are constants that satisfy 0 < (7 < [s.

Through this learning, the network energy is
lowered around the state specified by r, and as
a result of » moving successively at a slow pace, a
gutter is engraved in the energy landscape along
its track. In addition, a gentle flow in the same
direction as the movement of r is generated at the
bottom of the gutter.

Consequently after learning, the state of N;
moves along the trajectory of r simply by just giv-
ing the initial state. That is, if we input A as a
cue and a is sent to N7 through Ny, Ny shifts its
state to b’ during the delay period. If we input
B then, the state of N7 quickly changes to b, and
thus N; responds more strongly to B than to any
other pattern (see Fig. 8).

4. Computer Simulation

A computer simulation was carried out with pa-

rameters

=10, 7/ =50000r, 0=3, w'=10,
A=0.3, ¢c=10, o/ =50, B =25,
By =50, v =0.05 p=0.016, o =0.8.

First, we randomly generated 20 pairs of pat-
terns, where each pattern is a 1000-dimensional
sparse vector with 10% of elements being 1 and the
rest 0. We then input these pairs of patterns in or-
der and in reverse order, applying the above learn-
ing procedure. Training was repeated 20 times for
each pair.

After learning, we tested the model by repeating
a trial in which we gave a cue pattern to the model,
input a test (target or non-target) pattern after
a delay, and reset all cells. The response of the
model is shown in Fig. 7, where the time course of
the outputs of 20 units in N; is plotted. We can
see that many units exhibit a large output when
we input the correct target (in the second, fifth,



tenth and twelfth trials), whereas the outputs are
small for non-target input.

Histograms of the outputs of all units at the end
of test input are shown in Fig. 8, where (a) and
(b) are typical cases for target and non-target pat-
terns, respectively. Although their averages are
nearly equal, the two distributions are obviously
different. In fact, the number of units in (a) with
outputs greater than 0.5 is about 3 times larger
than in (b). This indicates that the model is able
to distinguish the target pattern.

We also see that the units exhibit similar activ-
ities to the inferotemporal neurons. For example,
unit 20 responds to both A and B and sustains a
large output during the delay period, and unit 1
exhibits no response to A but strong response to
B with a gradually increasing output in the delay
period. These activities correspond well to those
of the above pair-coding and pair-recall neurons in
the monkey brain.

5. Concluding remarks

We have described a model that forms pair-
association memory based on the interaction be-
tween two networks, and demonstrated that this
model can not only perform a pair-association task
but also explains the neuronal activities observed
in the monkey inferotemporal cortex.

This model is biologically plausible, constructed
on the basis of computational requirements, and to
date, no other model can sufficiently explain the
above empirical data. We therefore believe that
the same principle underlies the neural mechanism
of pair-association memory in the primate brain.
We also believe that the learning signal generation
network Ns corresponds to the rhinal cortex based
on lesion studies on this area [5,6], although fur-
ther examinations are necessary, both theoretically
and experimentally.
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