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Abstract. Real-time pattern classification of electromyogram (EMG)
signals is significant and useful for developing prosthetic limbs. However,
the existing approaches are not practical enough because of several limi-
tations in their usage, such as the large amount of data required to train
the classifier. Here, we introduce a method employing a selective desen-
sitization neural network (SDNN) to solve this problem. The proposed
approach can train the EMG classifier to perform various hand move-
ments by using a few data samples, which provides a highly practical
method for real-time EMG pattern classification.

Keywords: EMG Pattern Classification, Selective Desensitization Neu-
ral Network, Prosthetic Limb, Hand Movement Classification.

1 Introduction

Hands play an important role in our lives. The classification of hand movements
by using surface electromyogram (EMG) signals is an important research issue
in the development of prosthetic limbs. Although there is an extensive history of
research in this field, the real-time robust implementation of this methodology
is still practically very difficult [1,2]. First, because each hand movement is as-
sociated with multiple muscles, the surface EMG signal obtained from a sensor
is the superposition of all the signals obtained from the related muscle activity;
hence, complicating the correspondence relationship between movements and
signals. Second, surface EMG signals are not reproducible, because there is a

large difference between individuals, and even within a person the signals tend
to fluctuate on every trial. As a result, in order for the existing approaches to
work, the following conditions have been assumed:

– Collect sufficient data samples from the subject.
– Choose the number of sensors carefully in order to avoid redundancy, which
often causes harmful effects while learning the data.
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– Choose the positions of the sensors carefully.
– The subject needs to be trained in advance, so that he/she can deliver stable

EMG signals.
– Preprocess the obtained signals carefully, so that the data-learning algorithm

can produce a satisfactory EMG classifier.
– Extract suitable features from the data samples (for the same reason as

above).

All these requirements made the real-time EMG pattern classification practically
difficult to implement.

On the other hand, a selective desensitization neural network (SDNN) [3]
performs significantly better in approximating a wide range of functions by using
few training data samples. Therefore, in this paper, we will exploit the SDNN
for the classification of the surface EMG pattern. In particular, we will apply
this method to the problem of hand-movement classification, wherein real-time

performance is crucial, particularly for prosthetic limbs.

2 Research Background

2.1 Electromyogram

Muscle contraction is triggered by the excitement of muscle fibers, which is in-
voked by a signal from the alpha motor neurons in the spinal cord. The electrical
potential difference measured through the muscle contraction is called a myo-
genic potential, and its time-series signal is called an EMG. Since an EMG occurs
30–100 ms before the muscle contraction, it is considered theoretically possible
to estimate the occurrence of the corresponding bodily movement from the EMG

signals before the actual movement (muscle contraction) occurs.
For measuring the EMG signals, two types of electrodes can be used: needle

electrodes and surface electrodes. The needle electrodes target specific muscle
fibers and measure EMG signals with precision. However, they are accompanied
with a physical pain to the subject, because the needle has to be inserted into
the subject’s skin. On the other hand, in the case of surface electrodes, there is
little pain, as there is no needle insertion involved to measure the EMG signals.
Instead, the electrical potential measured by the surface electrodes is a sum-
mation of the local electrical potentials, which makes the exact estimation of
the corresponding bodily movement more difficult than that in the case of using
needle electrodes.
In this study, we will use surface electrodes, considering the advantage and to

try overcoming the disadvantage described above by introducing the SDNN.

2.2 Selective Desensitization Neural Network

The SDNN [3] is known to have overcome the several limitations of the multilayer
perceptron, and to ably approximate a wide range of functions by using few
training data samples. Here, we will be illustrating an example of approximating
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a function y = f(x) by employing the SDNN, given a continuous-valued input
vector x = (x1, . . . , xm), where m ≥ 2.
The input layer of the SDNN consists of m neuronal groups (G1

1, . . . , G
1
m).

Each group is composed of n neurons and represents an input variable xµ, i.e.,
the input variable is represented in a distributed manner by the activity patterns
of the neurons. Then, the middle layer of the SDNN consists of m(m−1) neuronal
groups G2

µ,ν (µ, ν = 1, . . . ,m;µ != ν). The neurons in G2
µ,ν are connected with

both the neurons in G1
µ and G1

ν (µ != ν), in the input layer. This realizes a

procedure called desensitization, which neutralizes the output of the neuron
regardless of its input and inner potential. For example, if a neuron is configured
to output either 1 or −1 with equal probabilities as its default output, it will
output 0 in the case that the neuron is desensitized. Finally, the output layer
of the SDNN consists of n′ neurons, each of which is connected with all the

neurons in the middle layer. The output of the i-th neuron in the output layer
is calculated by

yi = g

(

∑

µ,ν( !=µ)

n
∑

j=1

ω
µ,ν
ij x

µ,ν
j − hi

)

, (1)

where hi is a threshold, ωµ,νij is a synaptic weight from the j-th neuron of G2
µ,ν

in the middle layer, and g(u) is the activation function, where g(u) = 1 for u > 0
and 0 for u ≤ 0.
Learning of this network is performed using a target vector p = (p1, . . . , pn′).

The threshold and the synaptic weights between the middle layer and the output
layer are specifically updated by

ω
µ,ν
i,j ← ω

µ,ν
i,j + c(pi − yi)x

µ,ν
j , (2)

hi ← hi − c(pi − yi), (3)

where c is a learning coefficient.

3 Methods

3.1 Signal Measurement

Personal-EMG (Oisaka Electronic Device Ltd. [4]) equipment is used to measure

the surface EMG signals. This can measure the integral of the EMG signal
(IEMG) and the original EMG at the same time. In this study, the EMG and
IEMG signals are sampled at 3 kHz by using a 12-bit A/D converter, and for
the classification of hand movements, an IEMG signal is used, which is low-pass
filtered with a cut-off frequency of 4.8 Hz.

Regarding the myoelectric sensors, we use 10 pairs of wet-electrodes, which are

pasted around the subject’s right arm (Fig. 1). The sensors target the following
six muscles: flexor carpi radialis, flexor digitorum profundus, flexor carpi ulnaris,
extensor digitorum, flexor carpi long radialis, brachioradialis, and biceps brachii
[5]. However, the sensors do not need to be positioned accurately.
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Fig. 1. Placement of wet electrodes

none A B

C D E F

Fig. 2. Seven categories to be classified
from the EMG signals [6]

3.2 Target Hand Movements

In this study, six hand movements (wrist flexion, wrist extension, grasping,
opening up, wrist supination, and wrist pronation) and no-movement condi-
tions are targeted for the classification. In the following sections, we denote the

no-movement condition by “basic position (none),” wrist flexion by “movement-
A,” wrist extension by “movement-B,” grasping by “movement-C,” opening up

by “movement-D,” wrist supination by “movement-E,” and wrist pronation by
“movement-F” (Fig. 2).

3.3 Preprocessing of IEMG Signals

Preprocessing is performed to handle the IEMG signals with the SDNN (Fig. 3).
First, each IEMG signal is normalized by the maximum value at each channel,
and the normalized IEMG signals are then normalized again by the maximum

value at each time step. Next, each IEMG channel is connected to a neuronal
group in the input layer of the SDNN, and each neuronal group is composed
of multiple neurons, as described in the previous section. In consequence, we

code the value of the IEMG signal so that only 50% of the neurons can be in a

continual excited state, and the pattern of excitement can depict the continuous
change in the IEMG value consecutively (Fig. 4).

3.4 Learning of the SDNN

The internal structure of the SDNN is shown in Fig. 5. In this study, the in-
put layer of the SDNN is composed of 360 neurons: 300 neurons for 10 IEMG

channels, 30 neurons for the total value of all the IEMG signals, and 30 neurons
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Fig. 3. Training process of the proposed
system
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Fig. 4. Distributed coding of IEMG sig-
nals

for the difference of the total IEMG value from a step in the past. There are

two middle layers composed of a total of 6600 neurons: in the first layer, half
of the neurons are desensitized by the corresponding neurons in the input layer,
except for the neurons representing the total value of the IEMG signals; and
in the second layer, the desensitization procedure is repeated by the neurons
representing the total value of the IEMG signals. The output layer is composed
of six neurons, each of which corresponds to the classifier of each movement.
In the learning cycle, we train the SDNN by supplying the preprocessed input

signals greater than the noise threshold and the target patterns representing
the corresponding movement. The synaptic weights from the middle layer to
the output layer and the thresholds in the output layer are specifically modified
according to Eqs. (2) and (3). Here, the training is repeated 10 times and the

learning coefficient c is set to 0.1.

3.5 Evaluation of Classification

In order to evaluate the classification ability of the proposed system after learn-
ing, we define a classification rate for each movement as follows. First, a test

data sample is fed into the system and movement detection is performed in
every frame. Second, if any movement has been detected more than six times,
the test data sample is classified into the movement detected most frequently;
otherwise, it is classified into “none”. Third, we judge whether the classification
is correct or not. For example, the classification is regarded as correct if the

classified movement is the same as that corresponding to the test data sample.
Finally, we apply this procedure to all the test data samples corresponding to the

same movement, and then calculate the classification rate as a percentage of the

number of correct classifications to the total number of the test data samples.
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Fig. 5. Structure of SDNN

4 Experiment

To collect the IEMG data, five male subjects are asked to execute one movement
for 2 s and repeat all the six movements (Fig. 2), three times in the same order
in a session. The session is repeated nine times, which provides the total number

of data samples.
After the measurement, a cross validation is performed to calculate the fi-

nal classification rate: (1) pick up one session data (which contains three data

samples for every movement) to train the SDNN whose classification rates are

calculated by using the other eight session data as test data, (2) repeat it by
changing the training data samples for all combinations, and (3) compute the

total average as the final classification rate.
Figure 6 shows an example of the IEMG signals obtained from one subject

when the subject performs the six movements. Each line corresponds to the

signal from a channel, and each shaded box represents the movement that is
labeled. From this figure, it can be seen that the signals are very unstable and
fluctuate at every trial.
Figure 7 plots the final classification rate for each movement of each subject.

The average classification rates over the sixmovement categories are (s1) 86.73%,
(s2) 100.00%, (s3) 92.44%, (s4) 97.15%, and (s5) 100.00%. The total average
classification rate over the five subjects and the six movements is 95.26%.
Figure 8 shows an example of the total value of the IEMG signals together

with the outputs (classified movements) of six neurons in the output layer of the
SDNN. The shaded regions represent the movements classified by the SDNN.
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Fig. 6. Example of IEMG signals from a
subject
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Fig. 8. Example of real-time classification of six movements

Each classification is computed together with an increase in the total IEMG

value, implying that the real-time classification is achieved (see the video at [7]).

5 Conclusion

By introducing the SDNN into the pattern classifier, the real-time pattern clas-
sification of multiple hand movements was presented. The experimental results
from the five human subjects showed that only three training data samples for
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each movement are sufficient for the proposed system to output a classification
accuracy of >95% (average) for the six targeted hand movements. This approach
is considered to be more practical than the existing methods for the following
reasons:

– It does not require large number of training data samples to obtain a good
classifier.

– It does not require the user to position sensors on optimal locations.
– It does not require complicated preprocessing of the signal data.
– It does not require the subject to be trained or to be given detailed instruc-

tions in advance.

Future work includes more detailed analyses on both the number of training
data samples and sensors. Furthermore, because the SDNN exhibits high perfor-
mance in approximating a wide range of functions, it is considered to be able not
only to classify the categories of movements but also to estimate the speed/force
of each movement.
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