
Robustness of Selective Desensitization
Perceptron Against Irrelevant and Partially
Relevant Features in Pattern Classification

Tomohiro Tanno, Kazumasa Horie, Jun Izawa, and Masahiko Morita

University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
tanno@bcl.esys.tsukuba.ac.jp, horie@bipl-sdnn.org,

izawa@emp.tsukuba.ac.jp, mor@bcl.esys.tsukuba.ac.jp

Abstract. Recent practical studies have shown that a selective desensi-
tization neural network (SDNN) is a high-performance function approx-
imator that is robust against redundant input dimensions. This paper
examined the classification performance of a single-output-SDNN, which
we refer to as a selective desensitization perceptron (SDP), through a nu-
merical experiment on binary classification problems that include some
irrelevant features and partially relevant features and compared these
results with multilayer perceptron (MLP) and support vector machine
(SVM) classification methods. The results show that SDP was highly
effective not only in dealing with irrelevant features but also in a dataset
including a partially relevant feature, which is irrelevant in most of the
domain but affects the output in a specific domain. These results indicate
that the previously observed SDNN’s high-performance in the practical
problems might be originated from the fact that SDP does not require
a precise feature selection with taking account of the various degrees of
feature relevance.

Keywords: Binary Classification, Selective Desensitization Perceptron,
Irrelevant Feature, Partially Relevant Feature.

1 Introduction

When one uses a classifier for solving a practical problem with a multidimen-
sional dataset, it is typically unknown whether the dataset includes redundant
dimensions and which dimensions are actually redundant for this classification
problem. Therefore, the user of a classifier often uses all features available even
though many irrelevant features may be included. However, irrelevant features
are known to have harmful effects on learning processes, such as increases in
learning time and degradation of classification accuracy. For example, although
support vector machines (SVMs) with radial basis function (RBF) kernel are
known to exhibit excellent performance with binary classification problems, their
accuracy severely decreases when the dataset includes irrelevant features [1, 2].
To deal with this, multiple methods of feature selection have been proposed in

2 Tomohiro Tanno et al.

order to improve the performance via removal of irrelevant features [2, 3]. How-
ever, these methods often require prior and technical knowledge, time, and effort.
Besides, the accuracy may not be improved by feature selection when some fea-
tures seem to be irrelevant but are actually relevant in a specific condition. For
example, the features may be irrelevant in most of the domain but relevant in a
certain range of their (or other feature’s) respective domains. We refer to these
features as “partially relevant features” here. These features may degrade the
classification accuracy like irrelevant features, but they should not be completely
removed because they may be critical to solve the pattern in a certain domain.

For example, a multilayer perceptron (MLP) is a layered neural network
known to be relatively robust to irrelevant features, i.e., the degradation of the
classification accuracy is small. This is because its structure enables it to ignore
their effects by decaying the synaptic weight of the input [4]. However, because
it completely ignores the feature, it is predicted that the MLP cannot consider
the partial relevance of the feature.

In contrast, a selective desensitization neural network (SDNN) is another
layered neural network that exhibits some superiority as a function approxi-
mator. A study on continuous-state reinforcement learning showed that SDNN
performed well when approximating a value function that included some re-
dundant dimensions [5]. Furthermore, Nonaka et al. showed that SDNN could
accurately approximate a complicated function that outputs a constant value
in a specific domain; this can be considered as the case that the features are
partially irrelevant to the output [6]. Although the SDNN is a function approx-
imator, the output layer of SDNN is comprised of a set of simple perceptrons,
each of which can be regarded as a binary classifier. Considering these proper-
ties of SDNN combined with its previously reported robustness, we hypothesized
that a single-output-SDNN, which we refer to as a selective desensitization per-
ceptron (SDP), is advantageous in binary classification for dealing with data
that includes irrelevant and partially relevant features.

To test this idea, we systematically examined the robustness of SDP against
irrelevant and partially relevant features. We conducted a numerical experiment
on binary classification problems that included some irrelevant features or par-
tially relevant features, and then compared the performances of SDP, MLP, and
RBF kernel SVM.

2 Selective Desensitization Perceptron

SDP is a single-output-SDNN that can be applied as a binary classifier. It is
constructed by applying manipulations of pattern coding and selective desen-
sitization to a simple perceptron. The structure of an SDP is shown in Fig.1.
Pattern coding and selective desensitization are performed from the first to the
second layer and the second to the third layer, respectively. The third to the
fourth layer comprises a simple perceptron for binary classification, which is the
only part that SDP trains.

Robustness of SDP Against Irrelevant and Partially Relevant Features 3

1st

Layer

2nd

Layer

3rd

Layer

4th

Layer

��

��

��

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.
.
.
.

.
.
.

Fig. 1. Structure of an SDP with m dimensional input.

2.1 Pattern Coding

Pattern coding converts each analog input value into high-dimensional binary
vectors known as code patterns. We specifically adopt the following procedures
for all the input variables using different random sequences.

(1) After we quantized the analog input value x into q bins, we assigned an
n-dimensional vector whose elements take only +1 or −1 to each bin. (2) We
set P1, the pattern vector of the first bin, by selecting +1 and −1 randomly
for each element so that half of the elements take positive values and the rest
take negative values. (3) For P2, the pattern after the first bin (that is, P1),
we randomly selected r elements from those with positive value and the other r
elements from those with negative value and then flipped the signs of these 2r
elements. (4) Subsequently, we repeated this process for Pk based on the pattern
of P(k−1) until we completed the same for the last bin.

This method results in a coded pattern that gradually changes from the first
bin to the last bin, while ensuring that the correlation between two consecutive
patterns is high and that the correlation between two patterns that are apart is
near zero. If the code patterns fulfill these conditions, the values of the parame-
ters, n, q, and r, do not affect the performance of SDNN (and SDP) significantly.
A large n and q are always preferable if we disregard computational costs [6].

4 Tomohiro Tanno et al.

2.2 Selective Desensitization

Selective desensitization integrates two binary code patterns into one ternary
(−1, 0,+1) pattern by modifying one with the other. When there are two code
patterns, X = (x1, x2, ..., xn) and Y = (y1, y2, ..., yn), xi is desensitized if yi =
−1; that is, X is modified with Y into

X(Y) = (
1 + y1

2
x1, ...,

1 + yn
2

xn). (1)

This makes X(Y) a ternary pattern whose half of the elements are zero and the
other half are the same as X. Note that different code patterns should be used
for respective input variables to avoid undesirable bias in the modification (for
example, X(Y) never contains an element −1 if X = Y). Likewise, Y (X), or Y
modified with X, can be considered, and we use both X(Y) and Y (X) as the
input pattern to the perceptron (Fig.1).

In general, if the input dimension m is greater than two, selective desensiti-
zation is conducted for all combinations of modified and modifier variables, so
that m(m− 1) ternary patterns are created in the third layer (Fig.1).

2.3 Simple Perceptron

The output unit is a threshold element receiving signals from the third layer and
emits 0 or 1, which works as a simple perceptron. In mathematical terms,

z = f(
s∑

i=1

wipi + h), (2)

where s is the input size (number of elements in the third layer); pi and wi are
the i-th input signal (output of the third layer) and its weight, respectively; h
is the threshold input; and f(u) denotes the Heaviside step function taking 1
for u > 0 and 0 otherwise. Only this part is trained, with an error-correcting
rule generally used for simple perceptrons. Specifically, the input weights and
the threshold are updated as

wi(t+ 1) = wi(t) + (d− z)pi, (3)

h(t+ 1) = h(t) + (d− z), (4)

where d is the target signal (0 or 1).

3 Numerical Experiment

We conducted an experiment on binary classification problems that included one
or more irrelevant features and/or partially relevant features and compared the
performance of SDP, MLP, and SVM. Here, an irrelevant feature is an element
in the input vector that does not affect the output at all. A partially relevant

Robustness of SDP Against Irrelevant and Partially Relevant Features 5

feature, on the other hand, does not affect the output in most of its domain, but
affects the output in a specific domain.

A dataset was generated using a binary (black and white) image of size 101×
101 (10201 pixels in total) which represents the correct classification boundary
(Fig.2). For each pixel, the horizontal-vertical coordinates (normalized to [0, 1])
were used as the first and second components of the feature vector, and the
luminance (white is 1 and black is 0) was used as the class number. Those two
features were the relevant features that determined the output class. One or
more random values of range [0, 1] were included in each feature vector as the
third or later components, which were the irrelevant features.

class 0 class 1

Target Boundary Training Sample (400)

��

��

Training Sample (2000)

Fig. 2. The target class boundary and examples of the training sample set. The (x1, x2)
coordinates were the two feature values that determined the output class value shown
by the luminance.

The experiment was conducted as per the following procedures:

1. A certain number (k) of pixels on a binary image was pseudo-randomly
selected with no overlap. The training sample set was created using these
pixel points.

2. Each classifier learned the training samples.
3. Each classifier made predictions of the output class of 50000 unlearned

points. Here, the rate of misclassified points was evaluated as the gener-
alization error.

4. The above steps were repeated for 10 trials with different pseudo-random
sequences.

The training parameters of classifiers are described below:

SDP: The pattern coding parameters were n = 5000, q = 101, and r = 100.
The model was trained until every training sample was correctly classified.

MLP: One hidden layer of 100 units was applied between the input and the out-
put layer. For hidden and output layers, hyperbolic tangent (tanh) was used

6 Tomohiro Tanno et al.

as the activation function. Training was done with a standard backprop-
agation algorithm until the mean squared error of training reached below
0.005.

SVM: The RBF kernel was used. Kernel parameters were searched for the val-
ues of C = 2−5, 2−3, ..., 215 and γ = 2−15, 2−13, ..., 23 for every learning trial
by five-fold cross-validation and grid search. LIBSVM was used [1].

3.1 Results

First, we examined the influence of irrelevant features. Fig.3 shows the mean
generalization error of each classifier against the number of irrelevant features
included in the input. The number of training samples was 400 for (a) and 2000
for (b). The error of SVM increased considerably as the number of irrelevant
features increased, while the error of SDP and MLP did not.

0.0

2.0

4.0

6.0

0 1 2 3

G
e
n

e
ra

li
z
a
ti

o
n

 E
rr

o
r

(%
)

Number of Irrelevant Features

SDP
MLP
SVM

0.0

4.0

8.0

12.0

0 1 2 3

G
e
n

e
ra

li
z
a
ti

o
n

 E
rr

o
r

(%
)

Number of Irrelevant Features

SDP
MLP
SVM

(a) 400 samples (b) 2000 samples

Fig. 3. Mean generalization error against the number of irrelevant features. The num-
ber of samples was 400 in (a) and 2000 in (b). Error bars indicate standard deviation.

Then, we introduced a partially relevant feature. Here, the third feature x3

was the partially relevant feature; specifically, the output class was always 0 when
x3 was less than 0.1, and always 1 when x3 was greater than 0.9. Otherwise the
output was determined by the first two relevant features. In other words, x3 is
relevant to the output near the domain of x3 = 0.1 and x3 = 0.9, and irrelevant
otherwise.

Fig.4 and Fig.5 show the results of learning data with one partially relevant
feature and one irrelevant feature. The number of training samples was 2000.
In Fig.4, the mean generalization error was compared with the case of two ir-
relevant features. The error of MLP and SVM increased substantially as one of

Robustness of SDP Against Irrelevant and Partially Relevant Features 7

0.0

2.0

4.0

6.0

G
e
n

e
ra

li
z
a
ti

o
n

 E
rr

o
r

(%
)

SDP

MLP

SVM

(a) irrelevant (b) partially-relevant

Fig. 4. (a) Mean generalization error for the problem with two irrelevant features.
(b) Mean generalization error for the problem with one partially relevant feature and
one irrelevant feature. The number of training samples was 2000. Error bars indicate
standard deviation.

�� � 0.90 0.910.05 0.30 0.70

Target
Boundary

SDP

MLP

SVM

Fig. 5. Cross-sectional views of the class boundary constructed by each classifier, each
of which is plotted in the (x1, x2) coordinate. The value for x4 was fixed at 0.50.

8 Tomohiro Tanno et al.

the irrelevant features became partially relevant, while the increase was much
smaller for SDP. Fig.5 shows some examples of the boundaries that each classi-
fier constructed according to its predictions. It shows that MLP and SVM could
not make accurate predictions, especially, when the output should be always
0 or 1 (where x3 < 0.1 or x3 > 0.9). In contrast, SDP showed more accurate
predictions for the entire domain of x3.

4 Discussion

These results show that SDP is a more robust classifier than MLP and SVM for
irrelevancy and partial-relevancy in classification problems. Here, we discuss how
these three are influenced by irrelevant features, and why SDP is more robust.

SVM with an RBF kernel is known to be susceptible to irrelevant features
[2], and this was confirmed in our experiment (Fig.3). This is considered to be
because its structure does not allow it to ignore a specific input variable. Because
the input space became larger with the addition of irrelevant features, training
samples became sparse and the training of SVM was directly affected.

MLP is known to be relatively robust to irrelevant features [4], a trend which
was also shown in our experiment (Fig.3). Because MLP determines the output
according to the combination of the weighted sum of the input variables, it can
ignore a specific variable by setting the synaptic weight for that variable to zero.
However, Fig.3 indicates that MLP cannot be trained to ignore the irrelevant
features with fewer training samples. Furthermore, because MLP can only ignore
the feature completely, the error increased when the feature was partially relevant
to the output (Fig.4). Fig.5 shows how the output of MLP was affected by the
value of x3 (partially relevant feature) in the domain where x3 is irrelevant to
the output.

In contrast to SVM and MLP, the influences of irrelevant features and par-
tially relevant features were very small for SDP (Fig.3 and Fig.4). Fig.5 shows
that the predictions of SDP were highly accurate in the entire domain of x3,
which indicates that SDP can remove the influence of a specific input variable
without completely ignoring it. One possible reason for this is the mapping to
the high-dimensional space by manipulations of pattern coding and selective de-
sensitization. Because the weights in SDP are connected from each element of
the high-dimensional vectors to the output, SDP can delete the influence of a
certain variable by making the weighted sum of the elements zero, which can
be achieved without setting the weight itself to zero. For example, consider the
case that P (x3 = 0.30) = [+1,−1, ...] and P (x3 = 0.70) = [−1,+1, ...], which are
the vectors (code patterns) that the values of 0.30 and 0.70 are converted into,
and suppose that the third and later elements are all desensitized and that the
weights for the first and second elements are equal. Then the weighted sum be-
comes zero for both x3 = 0.30 and x3 = 0.70, but if P (x3 = 0.05) = [+1,+1, ...],
the weighted sum will not be zero for x3 = 0.05, meaning that the output is
affected by x3 around 0.05 but not around 0.30 and 0.70. This enables SDP to
remove the influence of the variable only in a specific domain.

Robustness of SDP Against Irrelevant and Partially Relevant Features 9

Although SDP converts the inputs to higher dimensional code patterns, the
computational cost does not increase much because it does not train hidden
layer(s) and also because the input pattern for the simple perceptron is simple
containing only +1, −1, and 0. Furthermore, the time for training (including pa-
rameter setting) of SDP was much smaller than that of MLP and SVM. However,
because the computational cost of SDP increases in proportion to the square of
the input dimension, SDP is especially suitable for problems with relatively low
dimension (less than several dozens).

For these reasons, SDP is a useful and a practical classifier that can be applied
when there is not much prior knowledge about a problem, or how each feature is
related to the output. This characteristic of SDP is potentially one of the factors
that contributed to achieving high performance and practicability in several
previous studies using SDNN, such as discriminating multiple hand motions from
surface electromyogram signals at high accuracy in real-time without precise
adjustment of the number and position of sensors [7, 8].

5 Conclusion

We compared the performance of SDP, MLP, and an RBF kernel SVM on bi-
nary classification problems that include some irrelevant features and partially
relevant features (features that are irrelevant in most of the domain but affect
the output in a specific domain).

The experimental results showed that SVM performed worse as more irrel-
evant features were included in the input, whereas MLP and SDP showed only
a slight degradation in performance. The performance of MLP degraded when
a partially relevant feature was included in the input. In contrast, SDP showed
a much smaller increase in classification error. Thus, we conclude that SDP is
highly robust to both the entire and the partial irrelevance of features.

According to this result, we suggest that using SDP allows us to keep relevant,
irrelevant, and partially relevant dimensions in the given dataset with less worry
of losing important information by unintentionally removing relevant or partially
relevant features. In other words, SDP is a very practical binary classifier that
can be easily used without prior knowledge of the problem, or highly technical
feature selection methods. These advantages of SDP might be a reason for the
previously reported high practicability of SDNN as a function approximator
since it is composed of a set of multiple SDPs.

In future research, we plan to carry out experiments on higher dimensional
problems with various types of features, such as those with different redundancies
and distributions, to further clarify the robustness of SDP in detail.

References

1. Chang, C. C., Lin, C. J.: LIBSVM: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2.3(27), 1–27 (2011)

10 Tomohiro Tanno et al.

2. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature
selection for SVMs. In: Leen, T. K., Dietterich, T. G., Tresp, V. (eds) NIPS 2000.
Advances in Neural Information Processing Systems, vol. 13, pp. 647–653. MIT
Press, Cambridge (2001)

3. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal
of machine learning research 3(May), 1157–1182 (2003)

4. Gasca, E., Sanchez, J. S., Alonso, R.: Eliminating redundancy and irrelevance using
a new MLP-based feature selection method. Pattern Recognition 39(2), 313–315
(2006)

5. Kobayashi, T., Shibuya, T., Morita, M.: Q-learning in continuous state-action space
with noisy and redundant inputs by using a selective desensitization neural network.
Journal of Advanced Computational Intelligence and Intelligent Informatics 19(6),
825–832 (2015)

6. Nonaka, K., Tanaka, F., Morita, M.: Empirical comparison of feedforward neural
network on two-variable function approximation (in Japanese). IEICE TRANSAC-
TIONS on Information and Systems J94(12), 2114–2125 (2011)

7. Kawata, H., Tanaka, F., Suemitsu, A., Morita, M.: Practical surface EMG pattern
classification by using a selective desensitization neural network. In: Wong, K.W.,
Mendis, B.S.U., Bouzerdoum, A. (eds) ICONIP 2010. LNCS, vol. 6444, pp. 42–49.
Springer, Heidelberg (2010)

8. Horie, K., Suemitsu, A., Morita, M.: Direct estimation of hand motion speed from
surface electromyograms using a selective desensitization neural network. Journal
of Signal Processing 18(4), 225–228 (2014)

