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Abstract

In the present paper, a fully recurrent neural
network with a nonmonotonic activation func-
tion that treats temporal sequences without ex-
panding them into spatial patterns is described.
This network associates a complex spatiotempo-
ral pattern with a simple one using trajectory at-
tractors formed by simple learning. Computer
simulations show that the model not only has
high recognition and generation abilities but can
also perform advanced processing using bidirec-
tional interactions.
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processing, recognition and generation, non-
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1. Introduction

We previously proposed a new type of
model for spatiotemporal pattern processing
[1,2] using a nonmonotone neural network [3]
or a fully recurrent neural network with a
nonmonotonic activation function.

This model can recognize temporal se-
quences without expanding them into spa-
tial patterns by delays, since it is carried out
by converting complex spatiotemporal pat-
terns that have long, overlapping trajectories
in the pattern space into simple ones with
short, separate trajectories. Such conversion
can be regarded as bottom-up processing.

Conversely, it is possible, in principle, for
the model to generate a complex spatiotem-
poral pattern from a simple one, which is re-
garded as top-down processing.

In the present study, we improve the model
so that it can convert patterns bidirection-
ally and perform top-down and bottom-up
processing simultaneously. By doing so, we
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Fig. 1: Architecture of the model.

expect to realize advanced processing of tem-
poral sequences as performed by the brain.

2. Architecture of the Model

The architecture of the model is shown in
Fig. 1, which is the same as the previous
model [2], but input and output parts are
renamed as primary and superior parts, re-
spectively.

The network in the top half is called the as-
sociation network, where complex spatiotem-
poral patterns are associated with simple
ones. This network has a simple structure
composed of n nonmonotonic neurons with
fully recurrent connections. These neurons
are divided into three parts, primary, middle
and superior, though all the neurons obey the
same dynamics and learning rule. The pri-
mary and superior parts treat complex and
simple spatiotemporal patterns, respectively;
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Fig. 2: Nonmonotonic activation function.

the middle part is composed of hidden neu-
rons and mediates between the two parts.

For convenience, we give serial numbers to
the neurons such that neurons 1 to k& com-
prise the primary part, k 4+ 1 to [ the middle
part, and [ 4+ 1 to n the superior part.

In recognition, a complex spatiotemporal
pattern is given to the primary part, and a
corresponding simple one appears in the su-
perior part. In generation, conversely, a sim-
ple pattern is given to the superior part and
the corresponding complex one is reproduced
in the primary part.

The network in the bottom half of the
figure is called the training network, which

makes a learning signal rpiq = (P41, ---,71)
for the middle part from rpy = (r1,...,7%)
and Tsup = (ri41,.-.,7) [2]. This network

consists of [ —k binary neurons corresponding
one-to-one to the hidden neurons in the mid-
dle part. Each neuron has a self-connection
of a positive strength p, receives rp; and rg,p
through random synaptic weight a;; and b,
and outputs r; (k < i <1). In mathematical
terms,

k n
r; = sgn (Zaiﬂ’j + Z bijrs + pri) , (1)

Jj=1 7j=l+1

where r; = —1 for ¢ < 0. In the following ex-
periments, a;; are normally distributed ran-
dom numbers with mean 1/k and variance
1/k, b;j are those with mean 1/(n — 1) and
variance 1/(n — 1), and p = 1.

3. Dynamics

Dynamics of the association network are

expressed by

du; "
T 7 = —u; + Zwijyi + z;, (2)
Jj=1

where u; is the potential of neuron ¢, and w;;
is the synaptic weight from neuron j, z; is
the external input, and 7 is a time constant.
The output y; is given by

yi = f(ua), (3)

where f(u) is a nonmonotonic function as
shown in Fig. 2. We use, as the nonmono-
tonic activation function,

1= 1+ re¢ (ul=h)

f(u) - 14 e—cu : 1 +ecl(|u|_h) )

where ¢, ¢, h and k are constants (¢ = 50,
¢ =10, h = 0.5, kK = —1 in the following
experiments).

Since the polarity of w; is important in
nonmonotone neural networks, we consider
x; = sgn(u;) and treat the vector @ =
(x1,...,2,) as the network state, where
sgn(u) =1 for u > 0 and —1 for u < 0.

The network state x at any instant is rep-
resented by a point in the state space consist-
ing of 2" possible states. When « changes,
it almost always moves to an adjacent point
in the state space because x; changes asyn-
chronously. Consequently, = leaves a track
with time, which we call the trajectory of x.
Similarly, we call ©ppi = (21,...,%%), Tmid =
(kt1,--.,21) and xgup = (Ti41,-..,2n) the
states of the primary, middle and superior
parts, respectively, and consider the trajec-
tories of i, £miq and x4, in the state space
of each part.

4. Learning Algorithm

Let us consider m complex spatiotempo-
ral patterns ¢! (t),...,c™(t) (0 <t < T) and
corresponding simple patterns s'(t),...,s™(t).
We assume that ¢ and s* are k and (n —
l)-dimensional binary vectors, respectively,



Table 1: Training schedule

cycle )\pri )\mid /\SUP cycle )\pri )\mid )\sup
1 0.20 0.20 0.20 11 |10.20 0.10 0.10
2 0.20 0.20 0.20 12 |1 0.10 0.10 0.20
3 0.20 0.18 0.18 13 |1 0.20 0.08 0.08
4 0.18 0.18 0.20 14 | 0.08 0.08 0.20
5 0.20 0.16 0.16 15 |1 0.20 0.06 0.06
6 0.16 0.16 0.20 16 | 0.06 0.06 0.20
7 0.20 0.14 0.14 17 1 0.20 0.04 0.04
8 0.14 0.14 0.20 18 | 0.04 0.04 0.20
9 0.20 0.12 0.12 19 10.20 0.00 0.00
10 | 0.12 0.12 0.20| 20 | 0.00 0.00 0.20

whose elements ¢!’ and s’ are +1 and change
asynchronously. Then, we can consider the
trajectories of ¢* and s* in the pattern space
regarded in the same light as the state spaces
of the primary and superior part, respec-
tively.

We train the association network using a
learning signal vector » = (rq,...,ry) with
binary elements (r; = 1) so that ¢# and
s* may be associated with each other. In
our previous model [1,2], the learning signals

Tori = (T1,...,7%) and rsup = (F41,.--,7)
corresponding to the primary and superior
parts were ct(t) and s* = {O*SH},, re-

spectively, where {O*S* },. denotes a spa-
tiotemporal pattern which changes gradually
from a static pattern O* to another pat-
tern S# = (s}, ,...,sh) in time T. In this
case, however, the network cannot gener-
ate c*(t) from s*(t) unless we give the ini-
tial state (¢*(0), Pmia(0)) to the primary and
Accordingly, we change the
—1) for
all p; that is, (7pri, Tsup) moves from O via

middle parts.
starting point of r» to O = (—1,...,
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Fig. 3: Learned trajectory in each part.

Table 2: Temporal sequences for the experi-
ment.

ct st ct st

{ABECD}r {0'S'}y | {DBAFB}; {07S%}r
{AEGFA}; {0'S%}y | {EDGEC}r {0°S%}s
{BACAF}r {035%}r | {EGABD}y {0950}
{BEFGF}7 {0354}y | {FBDAE}r {05}
{CEABD}7 {0°S°}r | {FGFCB}r {052}
{CGBAB}1 {0°S%}r | {GDADE}; {0383},
{DAFGE}; {07S"}y | {GFAEF}; {038}

(e*(0),O*) to (e*(T),S*) as schematically
shown in Fig. 3.

The learning algorithm is as follows. First,
we give an initial state = O and input r
in the form z; = A\;r; to the network while it
acts according to Eq. (2). Here, \; denotes
the input intensity of r; and takes respective
values Apri, Amid and Agyp for the primary
(1t < k), middle (k < i < l) and superior
(1 > 1) parts.

We simultaneously modify all synaptic
weights w;; according to

 dwij
dt

where 7/ denotes a time constant of learn-

= —w;; + ary;, (5)

ing (7' > 7) and « is a learning coefficient.
Since learning performance is better when «
is a decreasing function of |u;| [3], we set
a = o'y, o being a positive constant.
In the following experiments, o/ = 2.0 and
7/ = 400007.

We apply this procedure for all 4, and re-
peat it over several cycles, gradually decreas-
ing Amig and either Ap; or Agyp. An exam-
ple of the training schedule is shown in Ta-
ble 1. If £ can move along = in both cases
Amid = Apri = 0 and Ay = Apia = 0, then
the learned trajectories are thought to have
become attractors [3], and training is com-
pleted.

5. Computer Simulation

We carried out computer simulations with
400 input, 600 hidden and 400 output neu-
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Fig. 4: A process of recognition.

rons (k = 400, [ = 1000, n = 1400).

We prepared 14 complex patterns as
shown in Table 2. These patterns are formed
by connecting seven static patterns A-G
which are 400-dimensional binary vectors se-
lected at random. Static patterns S* and O*
(n=1,...,14) are also selected at random,
but if the head patterns s#(0) and s#2(0) are
identical, we set O*! = O*2. The temporal
length T' = 807 for all ¢* and s*.

After completing 20 cycles of learning, we
input various patterns to the model and ex-
amined its behavior.

5.1 Recognition

Figure 4 shows a process of recognition
when a learned sequence {OGFAEF } .,
was given to the primary part with inten-
sity Apri = 0.2. To the middle and superior
parts, we gave the initial states O at t = 0,
but nothing (z; = 0) thereafter.

Similarities (direction cosines) between
Zgup and S denoted by dsup(S*) are plotted
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Fig. 5: A process of generation.

in the top graph, and those between x,; and
A-G denoted by dpyi(A)-dpri(G) are plotted
in the bottom one. The middle graph shows
a change of iq in a different manner, where
similarities between @mia(t) and ., (t) (de-
noting the p-th learning signal) are plotted.
The abscissa is time scaled by the time con-
stant 7.

In the top graph, we see that dgyp(S*) in-
creases consistently with time at ¢ > 307,
and finally @g,, almost reaches S14. This
indicates that the model has correctly recog-
nized the input pattern as ¢4

In the same manner, the other 13 se-
quences were correctly recognized. For the

detailed process of recognition, see [1,2].

5.2 Generation

Figure 5 shows a process of generation
when a sequence {0035} was given
to the superior part. To the primary and
middle parts, we gave nothing but the initial
states O.
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Fig. 6: Behavior when a vague pattern is in-
putted.

In the bottom graph, we see that c'* =
{GFAEF }; is reproduced. In this way, it
was confirmed that the model can generate
c* from s* for the other u.

5.3 Bidirectional Interactions

Figure 6 shows another example, where
equivocal sequences {O(0%013)(5%5™) },,,,
and {OG(DF)A(DE)(EF)},y,, Wwere in-
putted simultaneously into the primary and
superior parts, respectively. Here (DF') de-
notes a vector lying midway between D and
F; (DE), (EF), (0°0'3) and (S°S'%) are
also middle vectors so that each input spa-
tiotemporal pattern lies in the middle of ¢!3

and ¢'* or 2 and s'4.

Accordingly, either
input alone cannot elicit a learned sequence
from the network.

By giving the two inputs at the same time,

14

however, c¢'* and s'* are reproduced in the

primary and superior parts at ¢ > 457. This

indicates that vague inputs to the primary
and superior parts complement each other
through bidirectional interactions.

6. Conclusion

We have described a nonmonotone neural
network model that performs recognition and
generation of spatiotemporal patterns based
on a mutual conversion between simple and
complex patterns.

This model is characterized by bidirec-
tional processing in a single network, which
enables active recognition, for example, de-
termining a consistent sequence even if the
input is incomplete.

Also, this model preserves the merits of the
previous model [2] such as the simple archi-
tecture and learning algorithm and tolerance
to noise in spatial and temporal dimensions.
For these reasons, we think that this model
shares some fundamental principles with the
brain and is highly promising.

Theoretical analysis and application of the
model are subjects for future study.
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