
Improving Time Series Prediction by the Selective Desensitization Neural Network
Based on Synaptic Weight Analysis

Shoichi Someno1, Kazumasa Horie2, Tomoki Ichiba1, Tomohiro Aki1, Masahiro Morita1

1 Graduate School of Systems and Information Engineering
University of Tsukuba,

1–1–1 Tennodai, Tsukuba-shi, 305–8573 Japan

2 Center for Computational Sciences
University of Tsukuba,

1–1–1 Tennodai, Tsukuba-shi, 305–8577 Japan

Abstract

The selective desensitization neural network (SDNN) is a
function approximator with high learning ability. It is suit-
able for time-series prediction problems with concept drift.
However, it is not very effective at dealing with a long time
window, because the computational costs increase with the
square of the number of input variables. In this paper, we
present a method for reducing the computational costs of the
SDNN for time-series prediction and eliminating trials and
errors by analyzing the synaptic weights of the SDNN after
training. We confirmed, using an artificial problem, that the
variance of synaptic weights reflects the significance of the
corresponding input variable. We also applied this analysis
to a real-world problem and improved prediction accuracy by
expanding the time window without increasing computational
costs. This method may be applied to other kinds of problems
and thus, extend the application range of the SDNN.

1. Introduction

The selective desensitization neural network (SDNN) is a
function approximator with high expression and generaliza-
tion abilities and numerous other merits such as low hyper-
parameter dependency and suitability for online incremental
learning [1]. In light of these advantages, Ichiba et al. [2]
applied the SDNN to predicting time series data with concept
drift and achieved better performance than previous studies.

However, the computational costs (computation time and
required memory) of the SDNN increase with the square of
the number n of input variables because the basic SDNN cal-
culates the output from the m = n(n − 1) variable pairs,
which limits the size of n. In the case of time series pre-
diction, the length of the time window is restricted, even if a
longer time window is desired [3]. Although we can reduce
the computational costs by eliminating insignificant variable
pairs [4], prioritization of their significance is difficult; it usu-
ally requires prior knowledge of the problem or many trials
and errors.

We have recently found that it is possible to analyze the

Figure 1: Structure of an SDNN with n dimensional input

significance of variable pairs based on the synaptic weights
of the trained SDNN. Specifically, we found that in the ap-
proximation task of an artificial function with additional input
variables that were irrelevant to the function value, the vari-
ance of the synaptic weights for pairs of irrelevant variables
was less than that for pairs of relevant variables. However, it
was not clear whether this analysis is effective at evaluating
the significance of variable pairs and reducing the computa-
tional costs in general cases.

In the present study, we analyze the synaptic weights of the
SDNN for time series prediction and aim to improve the pre-
diction accuracy with lower computational costs and minimal
effort.

2. Selective Desensitization Neural Network

The SDNN is constructed by introducing two manipula-
tions, pattern coding and selective desensitization into a par-
allel perceptron in Figure 1.



2.1 Pattern coding

First, the analogue input value is converted into a high-
dimensional binary vector (code pattern). Specifically, we
quantize the input range into q bins and create a lookup table
in which the code patterns P 1, P 2, ..., P q are assigned to each
bin. Each code pattern P 1, ..., P q is the L dimension binary
code pattern (L represents even numbers), consisting of equal
numbers, +1 and −1. Furthermore, it is preferable for the
correlation between two consecutive patterns to be high and
that between two patterns that are further apart to be closer to
0.

There are several methods of creating such code patterns
[1]. In this study, the following procedure is used. First, we
randomly create a pattern whose +1 and −1 are equal num-
bers, and designate it P 1. Then, we randomly select each r
elements of +1 and −1 from P 1, and we invert these signs to
get P 2. Likewise, P 3 is created by inverting the signals of 2r
in the elements of P 2. Similarly, Pu is sequentially created
by inverting 2r elements of Pu−1. The expression and gener-
alization ability of the SDNN are influenced by the dimension
number of code pattern L, division number of input range q,
and the number of inversion of the adjacent pattern r. In this
study, these parameters were selected based on preliminary
experiments.

2.2 Selective desensitization

Selective desensitization is an operation that involves inte-
grating two binary code patterns into one ternary (−1, 0, 1)
code pattern by modifying one with the other. For the ex-
planation of the modification procedure, we specifically con-
sider the instance where the code pattern S = (s1, s2, ..., sL)
is modified with the code pattern C = (c1, c2, ..., cL). It is
also to be assumed that there is a random one-to-one corre-
spondence between the elements of S and the elements of C.
If there is a correspondence between sµ and cν , the modified
element s′µ is represented as follows:

s′µ =
1 + cν

2
sµ (1)

In the case of cν = +1, the value of sµ is retained as it is.
In the case of cν = −1, it is converted to a neutral value
(= 0). Now, half of the elements of C are −1, therefore, half
of the elements of the ternary code patterns (s′1, s

′
2, ..., s

′
L) are

0 , while the other half are ±1. This code pattern is called “S
modified by C” and is represented as S(C). The signals of all
the modified code patterns enter into the parallel perceptron.

2.3 Parallel perceptron

The parallel perceptron is created by paralleling simple
perceptrons that output either 0 or 1, and determining the
overall output based on the sum of the output values of all

the simple perceptrons. Error correction learning is used in
parallel perceptron learning. For example, let us assume l out
of K simple perceptrons should output 1, but only v(< l) of
them actually outputted 1. At this point, we select l − v per-
ceptrons with internal potentials nearest the threshold value
among the K−v perceptrons that outputted 0 and train them.
In the case of v > l, we select v− l perceptrons with internal
potentials nearest the threshold value among the perceptrons
that outputted 1.

3. Experiment 1

In Experiment 1, we examine the relationship between the
variance of the synaptic weights and the significance of the
variables using artificial time series.

3.1 Methods

We use a chaotic time series {d1, d2, . . . , d1000} generated
by the logistic map [5] and small noise. Specifically, the i-th
component di is represented in the following equation:

di = 3.9di−1(1− di−1) +N(0, 0.022) (2)

, where N(0, 0.022) denotes Gaussian noise with zero mean
and a standard deviation of 0.02.

At each time step t, the SDNN receives dt−1, . . ., and dt−6

as the input variables x1, . . ., x6 and is trained to predict dt.
The training is performed completely online; thus, the input
vector is given only once.

In the case of 499 ≤ t < 1000, the SDNN also receives
dt, . . ., dt−5 and outputs d̂t+1, the predicted value of dt+1, to
calculate the mean absolute error (MAE).

Then, we analyze the synaptic weights of the parallel per-
ceptron. First, the input synapses are divided into 30 groups,
corresponding to the 30 variable pairs x1(x2), . . ., x6(x5),
where xi(xj) represents the modification of the variable xi by
xj . For each group, the variance of synaptic weights is calcu-
lated. Afterwards, we arrange the variable pairs in descending
order of variance. Finally, we repeat the above training and
error evaluation using first m pairs only, with m varying from
1 to 29.

The parameters of the SDNN are L = 1000, K = 700,
q = 501, and r = 2.

3.2 Results

Figure 2 shows the predicted and actual values of the time
series for 970 ≤ t ≤ 1000, indicating that the SDNN can
efficiently predict this time series. The MAE was 0.037.

Figure 3 shows the variance of synaptic weights for each
variable pair. We see that the value of the variance depended
mainly on the modified variable. The variance for xi(xj)
tended to decrease as i and j increased. As x1 is the most



Figure 2: Predicted and actual values of the time series (a part
of data)

Figure 3: Variance of synaptic weights for each variable pair

important factor for predicting the next value, and prediction
from xi (i = 2, ..., 6) becomes more difficult with an increase
in i, because of noise and the chaotic property of the logistic
map, this result is considered to indicate that the value of the
variance reflects the significance of the variable and variable
pair for prediction.

Figure 4 shows the prediction error (MAE) against the
number m of variable pairs used for training and prediction.
From this result, we see that removing variable pairs with low
variance reduced not only the computational costs but also
the prediction error, indicating that these pairs were unneces-
sary for prediction. We also see that although it is possible
to base prediction on only one pair in this task, using many
pairs with large variance improved the prediction accuracy,
probably because the influence of the noises contained in the
different variables was canceled.

4. Experiment 2

In Experiment 2, we apply the above method to a real-
world task of time-series prediction.

Figure 4: Prediction error when only high variance pairs were
used

4.1 Methods

Ichiba et al. [2] applied SDNN to the prediction of the
future closing price of Nikkei 225 on the Tokyo Stock Ex-
change1 based on previous closing prices. First, we briefly
explain their method.

The dataset is a time series of 4906 components {d1, ...,
d4906}. The task is to predict the price of Nikkei 225 N days
ahead based on the prices of the last k days (N = 1, 3, 5,
k = 30).

At time step t, k data points dt−N , . . ., dt−N−k+1 are in-
putted in the SDNN in this form: xi = dt−N−i+1/d̄t−N

(i = 1, . . ., 30), where d̄ is the average of dt−N , . . .,
dt−N−199, and was trained to predict dt/d̄t−N . At t > 1000,
it also predicted d̂t+N/d̄t based on dt, . . . , dt−k+1, and cal-
culated the prediction error between dt+N and d̂t+N .

In the present experiment, we first analyze the “original”
SDNN used in [2] for N = 3 in the same way as in Experi-
ment 1.

Based on the results of this analysis, we revise the SDNN
by eliminating insignificant variable pairs and extending the
size, k, of the time-window and adding some new pairs.
Then, we test the revised SDNN for N = 1, 3, and 5, and
examine the possibility of improving the prediction accuracy
without increasing the computational costs, while keeping tri-
als and errors to the minimum.

The parameters of the SDNN are fixed at L = 1250, K =
700, q = 1251, r = 1.

4.2 Results

Figure 5 shows the variance of the synaptic weights for all
(870) pairs xi(xj) (i, j = 1, . . . , 30, i ̸= j). It is seen that the
variance for xi(xj) mainly depends on i and is particularly
large for i ≤ 6, suggesting that the prices within the five
previous days are particularly significant. It is also seen that
the prices around 21 days prior might be more significant than
those around ten days or 28 days prior.

1https://finance.yahoo.com/quote/% 5EN225/



Figure 5: Variance of synaptic weights for each variable pair

Figure 6: Prediction error when only high variance pairs were
used

Figure 6 shows the prediction errors (MAE) when only m
variable pairs with larger variance were used for training and
prediction. The error tended to decrease as more pairs were
used, but the decrease was gentle for m > 100.

Based on these results, we extended the time window and
revised the SDNN. Specifically, we reduced 770 pairs, ex-
cluding the top 100 pairs from the original SDNN. Then, we
selected 28 variables x1, . . ., x7, x12, x17, . . ., x112 and added
756 pairs by combining them. As 38 pairs were included in
the top 100 pairs, 818 pairs were used in the revised SDNN.

Table 1 compares the errors of the revised SDNN with
m = 818 and that of the original SDNN with m = 870.
Although the revised SDNN showed almost the same error as
the original for N = 1, it exhibited considerably less error
for N = 5, indicating that the extension of the time window
was more effective for longer term prediction.

5. Conclusions

We have analyzed the SDNN for an artificial time-series

Table 1: Prediction errors for the original and revised SDNNs

N = 1 N = 3 N = 5

MAE RMSE MAE RMSE MAE RMSE

Original 138.4 194.1 245.9 335.3 327.7 439.8
Revised 138.0 193.7 242.4 329.3 314.8 423.5

prediction task and shown that the variance of the synaptic
weights for a variable pair reflects the significance of the pair,
and that we can reduce both the prediction error and the com-
putational costs by removing pairs with low variance. We
have also applied this method to a real-world time series pre-
diction task on stock price, and demonstrated that with mini-
mal trials and errors, it can improve prediction accuracy with-
out increasing computational costs.

Furthermore, the method of analyzing and revising the
SDNN presented here may be applied to different types of
problems; thus, it extends the application range of SDNN.

Acknowledgment

This work was supported by JSPS KAKENHI Grant Number
JP18H03304.

References

[1] K. Nonaka, F. Tanaka and M. Morita: Empirical compari-
son of feedforward neural networks on two-variable func-
tion approximation, IEICE Trans. Inf. & Syst. (Japanese
Edition), Vol. J94-D-II, No. 12, pp. 2114–2125, 2011.

[2] T. Ichiba, K. Horie, S. Someno, T. Aki, and M. Morita:
Application of the selective desensitization neural net-
work to concept drift problems, RISP International Work-
shop on Nonlinear Circuits, Communications and Signal
Processing, 2019 (accepted).

[3] A. Yamaguchi, S. Maya, T. Inagi, and K. Ueno: OPOS-
SAM online prediction of stream data using self-adaptive
memory, IEEE International Conference on Big Data,
2018 (accepted).

[4] K. Horie, A. Suemitsu, T. Tanno, and M. Morita: Direct
estimation of wrist joint angular velocities from surface
EMGs by using an SDNN function approximator, Inter-
national Conference on Neural Information Processing,
2016.

[5] G. Boeing: Visual analysis of nonlinear dynamical sys-
tems: chaos, fractals, self-similarity and the limits of pre-
diction, Systems, Vol. 4, 2016.


	 Introduction
	 Selective Desensitization Neural Network
	 Pattern coding
	 Selective desensitization
	 Parallel perceptron

	 Experiment 1
	 Methods
	 Results

	 Experiment 2
	 Methods
	 Results

	 Conclusions

