
Context-Dependent Processing of
Spatiotemporal Patterns Based on Interaction

Between Neurodynamical Systems

Takashi Hasuo1, Ken Yamane1, and Masahiko Morita1

Graduate School of Systems and Information Engineering, University of Tsukuba,
Tsukuba-city, 305-8573, Japan
hasuo@bcl.esys.tsukuba.ac.jp

Abstract. Dynamics of traditional neural network models are gener-
ally time-invariant. For that reason, they have limitations in context-
dependent processing. We present a new method, dynamic desensitiza-
tion, of varying neurodynamics continuously and construct a basic model
of interaction between neurodynamical systems. This model comprises
two nonmonotone neural networks storing sequential patterns as trajec-
tory attractors. The dynamics of respective networks are modified ac-
cording to the states of other networks. Using numerical experiments,
we also show that the model can recognize and recall complex sequences
with identical patterns in different positions.

1 Introduction
The brain can be regarded as an assemblage of dynamical systems comprising
many neurons that perform spatio-temporal pattern processing. Consequently,
neurodynamical systems comprising artificial neural networks with recurrent
connections and continuous-time dynamics are thought to offer great potential
for brain-like information processing. However, existing neurodynamical systems
have limited capability, particularly in terms of context-dependent processing.
Two explanations for this limited ability are the following. First, the dynam-

ics are usually time-invariant (at least in the short run). For that reason, the
system always makes the same transition at the same state unless it receives
external input. Second, no appropriate method is known for making different
neurodynamical systems interact. If two networks are interconnected in a usual
manner, they constitute a single neurodynamical system with time-invariant dy-
namics, rather than two different systems. In such a case, the influence of system
A on system B depends on the state of A, but not on that of B.

In this paper, we propose a method of varying the dynamics of a recur-
rent neural network according to another network. We construct a model for
context-dependent processing such as recognition and recall of complex sequen-
tial patterns.

2 Dynamic Desensitization
As a method of varying the dynamics of a neural network discretely, Morita
et al.[1] proposed selective desensitization. This method desensitizes about half



Fig. 1. Methods of varing neurodynamics:
Thick arrows represent trajectories of the
network state. Planes represent subspaces.
The dashed arrows represent trajectory at-
tractors in the subspaces.

Fig. 2. Model structure.

of the neurons or renders their output as neutral, depending on a given mod-
ification pattern. Through this operation, the modified state of the network is
projected onto a subspace of the state space, and produces transitions according
to the dynamics in the subspace. If trajectory attractors[2] are formed in differ-
ent subspaces, the network state reaches different target patterns according to
modification patterns, as shown schematically in Fig. 1(a).

In this model, however, the modification pattern is restricted to a static
pattern so that trajectory attractors can be formed within individual subspaces.
For that reason, we call this “static desensitization.”

Here we propose “dynamic desensitization” by extending the modification
pattern of static desensitization to a dynamic or spatiotemporal pattern. Then
the set of desensitized neurons, or the subspace onto which the network state is
projected, varies continuously with time, as depicted in Fig. 1(b). In this case, a
single trajectory attractor to the target state cannot be formed. If the change of
the modification pattern is sufficiently slow, however, the network state makes
short transitions in each of a series of subspaces and can thereby reach the target.

3 Model

Using the method described above, we constructed a basic model of interaction
between neurodynamical systems (Fig. 2). This model consists of two nonmono-
tone neural networks that have the same number of neurons and obey the same
dynamic equation.

Specifically, the i-th neuron (i=1,. . . ,n) of either network acts according to

τ
dui
dt

= −ui +
nX
j=1

wijyj + zi, yi = g(vi) · f(ui), (1)

where ui denotes the instantaneous potential, yi is the output, zi is the external
input. In addition, wij represents the synaptic weight from the j-th neuron of



Fig. 3. State transition diagram.

Table 1. Input sequences: Letters represent
n-dimensional binary patterns selected ran-
domly; {OABCD}T denotes a spatiotem-
poral pattern changing from a pattern O
via A, B and C into D over a period of T .
Each trajctory overlaps with others in ev-
ery unit section, e.g., {AB} is included in
s1, s2 and s3, and {BC} is included in s1,
s2 and s5.

s1 = {OABCD}T s2 = {OABCB}T
s3 = {OABDC}T s4 = {OACBD}T
s5 = {OBCBD}T s6 = {OBDAC}T
s7 = {OCADB}T s8 = {OCADA}T
s9 = {ODADC}T s10= {ODCDA}T

the same network, vi is the instantaneous potential of the corresponding neuron
of the other network, and τ is a time constant. Also, g(vi) is a sigmoid function
which takes a value from 0 to 1, and f(ui) is a nonmonotonic output function[2].
If vi takes a positive large value, the output is yi ' f(ui), but if vi takes a
negative large value, then g(vi) and yi are nearly zero, which means that the
neuron is desensitized. Here we consider xi ≡ sgn(ui) (sgn(u) = 1 for u > 0 and
−1 for u ≤ 0) and refer to the binary vector x = (x1, . . . , xn) as the current
state of the network.

The two networks have a similar structure, but they differ in function (Fig. 3).
One network receives an input of complex spatiotemporal patterns from the
outside and stores them. This network is termed the input part, but it also
shows the recalled pattern when no input pattern is fed. The other network,
termed the context part, does not receive the external input directly, but it
autonomously changes its state from a fixed initial state O0, via some branch
points, to a terminal state Cµ in accordance with the state transitions of the
input part.

4 Computer Simulation
We carried out simulation experiments using the 10 spatiotemporal patterns
s1, . . . , s10 presented in Table 1. Their dimensions (and size of each network)
were n = 800 and their temporal length was T = 20τ . We also generated cµ =
{O0 • • •Cµ}T (µ = 1, . . . , 10) corresponding to sµ, where • represents a branch
point described above. Subsequently, we trained the model by giving sµ and cµ

as learning signals to the input and context parts, respectively, to store them as
trajectory attractors (see refs. [2] and [1] for the learning algorithm).

After completion of 30 training cycles, we gave various input patterns and
examined the behavior of the model. Figure 4 presents two examples in which
(a) s2 was fed with 10% noise and with temporal expansion and contraction,
and (b) only short sections of s9 were fed. The state of the context part reaches
C2 in (a) and C9 in (b), meaning that the model recognized the input pattern as



Fig. 4. Behavior of the model: Similarities of the network state (upper and middle
graphs) or the current input (lower graph) to reference patterns are plotted against
time scaled by the time constant τ .

s2 or s9. It is also apparent that a spatiotemporal pattern similar to the original
is recalled in the input part.

This result, together with those of many other experiments, indicates that
the two networks act autonomously and cooperatively through mutual dynamic
desensitization.

5 Concluding Remarks
We have proposed a dynamic desensitization method to modify a neurodynam-
ical system using another system. We have also shown that two systems which
are interconnected by this method can recognize and recall complex sequences
with many overlapping sections, even if they have substantial noise, have some
blank sections, or are temporally expanded or contracted.

Interaction through dynamic desensitization differs greatly from interaction
which takes place through ordinary synaptic connections between neurons: the
influence on dynamics of one system depends on the states of both systems.
This method also presents an advantage in that the number of interconnections
required is merely n. By developing this method, more than two neurodynamical
systems can interact to provide more powerful capability, which remains as a
subject for future study.
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