
Application of a Selective Desensitization Neural Network to Concept Drift Problems

Tomoki Ichiba1, Kazumasa Horie2, Shoichi Someno1, Tomohiro Aki1 and Masahiko Morita3

1 Graduate School of
Systems and Information Engineering,

University of Tsukuba
1–1–1 Tennodai, Tsukuba,
Ibaraki 305–8573, Japan

E-mail: ichiba@bcl.esys.tsukuba.ac.jp
someno@bcl.esys.tsukuba.ac.jp

aki@bcl.esys.tsukuba.ac.jp

2 Center for Computational Sciences,
University of Tsukuba

1–1–1 Tennodai, Tsukuba,
Ibaraki 305–8577, Japan

E-mail: horie@bipl-sdnn.org

3 Faculty of Engineering,
Information and Systems,

University of Tsukuba
1–1–1 Tennodai, Tsukuba,
Ibaraki 305–8573, Japan

E-mail: mor@bcl.esys.tsukuba.ac.jp

Abstract

A selective desensitization neural network (SDNN) has a high
function-approximation ability, low hyperparameter depen-
dence, and suitability for online incremental learning. These
properties suggest that an SDNN can deal well with tempo-
ral changes in the characteristics of data, or concept drift, al-
though this has not been verified. In this study, we conducted
experiments on online learning using an artificial dataset gen-
erated using a time-varying function and a real-world dataset
of a stock prices index, and evaluated the effectiveness of an
SDNN to solve concept drift problems. The results show that
using the SDNN exhibited superior performance over the ex-
isting methods for both datasets, suggesting that an SDNN is
highly suitable for certain types of concept drift problems.

1. Introduction

Concept drift is a problem in which the data characteris-
tics, such as the input-output relation and the input distribu-
tion, change over time. Examples of data with concept drift
are stock prices, which have often been used as real-world
datasets in previous studies [1, 2]. We focus on online predic-
tion of concept drift problems using machine learning.

Conventional learning algorithms have a certain difficulty
in dealing with concept drift, in that they require hyperpa-
rameter optimization, or are unsuitable for online incremental
learning. Recent studies [3, 4] have shown that a selective de-
sensitization neural network (SDNN) has high expression and
generalization abilities and low hyperparameter dependence.
In addition, we found that an SDNN can fit additional data
without significantly disrupting previously learned informa-
tion, indicating that it is suitable for online incremental learn-
ing, and that it may deal well with concept drift. However, an
SDNN has not been applied to concept drift problems to test
its performance.

In the present study, we conducted experiments on online

Figure 1: Structure of SDNN

prediction and evaluated the effectiveness of an SDNN for
dealing with concept drift.

2. Selective Desensitization Neural Network

An SDNN function approximator is constructed by apply-
ing manipulations of pattern coding and selective desensitiza-
tion to a parallel perceptron (PP), which is the only part that
an SDNN trains. The structure of an SDNN is shown in Fig.
1. Details of pattern coding, selective desensitization, and a
PP are described in this section.

2.1 Pattern coding

Pattern coding converts each analog value into binary (±1)
n-dimensional vectors as code patterns. In pattern coding,
Q code patterns, which correspond to an input space divided
into Q, are created. There are several methods of creating
code patterns. We explain our method below.

Journal of Signal Processing, Vol.23, No.4, pp.145-149, July 2019

SELECTED PAPER AT NCSP'19

Journal of Signal Processing, Vol. 23, No. 4, July 2019 145



First, we create P1, the first code pattern, by selecting +1
and −1 randomly for each element, such that half of the el-
ements take positive values and the rest take negative values.
Second, we create P2 by inverting the sign of r elements of
+1 and r elements of −1 of P1, which are selected randomly.
Subsequently, we repeat this process to create Pk based on
Pk−1 until P1 to PQ are created.

The results of this method ensure that the correlation be-
tween two consecutive patterns is high, and that the correla-
tion between two patterns decreases as the two patterns are
increasingly separated.

2.2 Selective desensitization

Selective desensitization integrates two binary code pat-
terns into a single ternary (−1, 0, 1) pattern by modifying one
pattern with the other.

As an example, we consider the case of desensitizing the
pattern S = (s1, ..., sn) with the pattern C = (c1, ..., cn). In
desensitization, it is assumed that there is a random one-to-
one correspondence between the elements of S and C. When
correspondence exists between si and cj , si is desensitized
through the following expression.

s′i =
si(1 + cj)

2
(1)

When cj = −1, si is desensitized, and s′i becomes a neutral
value (= 0). When cj = 1, s′i becomes the value of si. As a
result, half of the desensitized pattern elements are 0, and the
rest are 1 or −1.

2.3 Parallel perceptron

A PP consists of m simple perceptrons (SPs) with a Heav-
iside function as an activation function. The output of the PP
is obtained from the number of SPs that output a value of 1.
The p-delta method [5] is used for learning.

As an example, we consider a case in which only k SPs
output 1, although l(> k) SPs should output 1 for the input.
At this time, we apply error correction learning for l− k SPs,
which are selected from the m − k SPs that output 0 in the
order of increasing closeness of the internal potential to the
threshold value (= 0). In the case of k > l, the same error
correction learning is conducted for k − l SPs selected from
the m− k SPs that output 1.

3. Experiment with an Artificial Dataset

We compared the SDNN and other methods using an artifi-
cial dataset. Concept drift is categorized into several patterns,
such as sudden drift, incremental drift, and reoccurring drift
[1]. In this experiment, we focus on both sudden and incre-
mental drift.

(a) 1≤ t≤ 1000 (b) t=1500 (c) t=2000

(d) t=2500 (e) t=2999 (f) 3000≤ t≤ 7000

Figure 2: Target function at a certain time step t

3.1 Methods

An artificial dataset was generated by sampling an artificial
time-varying function f(x, y; t).

f(x, y; t) =




1 (g(x, y; t) > 1)

0 (g(x, y; t) < 0)

g(x, y; t) (otherwise)

g(x, y; t) =




k(x, y) (t < 1000)

k(x, y)− t−1000
1500 (1000 ≤ t < 1500)

k(x, y)− 2000−t
1500 (1500 ≤ t < 2500)

k(x, y)− t−3000
1500 (2500 ≤ t < 3000)

l(x, y) (t ≥ 3000)

l(x, y) =




0.5 (0.7 ≤ x ≤ 0.95, 0.1 ≤ y ≤ 0.9)

1 ((x− 0.25)
2
+ (y − 0.75)

2
< 0.04)

1+x
4 cos(5π

√
xy2) + 1

2 (otherwise)

k(x, y) =
1 + x

4
cos(2π

√
xy2) +

1

2
(2)

The value of this function gradually decreases during
1000 < t ≤ 1500, increases during 1500 < t ≤ 2500,
and again decreases during 2500 < t ≤ 2999 to the initial
value (Fig. 2(a)–2(e)), which can be regarded as incremental
drift. It then changes abruptly at t = 3000 (sudden drift); the
spatial frequency of the function increases and discontinuous
domains appear (Fig. 2(f)).

At each time step, one sample was obtained randomly from
the lattice points at 0.01 intervals within the input domain

146 Journal of Signal Processing, Vol. 23, No. 4, July 2019



Table 1: Average approximation error over all time steps

MLP RBFN 441 RBFN 81 INGnet SDNN

0.220 0.064 0.071 0.055 0.047

{(x, y) | x, y ∈ [0, 1]} and was given to each function ap-
proximator only once for training (and discarded at the next
time step). The mean absolute error was then calculated from
the approximation error at all (101× 101) lattice points. The
total number of time steps was 7,000. For comparison, we
tested other function approximators: a multilayer perceptron
(MLP), a radial basis function network (RBFN) [6], and an
incremental normalized Gaussian network (INGnet) [7].

MLP One hidden layer of 50 units was applied between
the input and output layers. For the hidden layer, the hy-
perbolic tangent (tanh) was used as the activation function,
whereas a linear function was used for the output layer. Train-
ing was conducted using a backpropagation algorithm. We
repeated the above experiment ten times using different ini-
tial synaptic weights.

RBFN We set the lattice points at s intervals in the input
domain, which were the center of the basis functions. We
used a Gaussian function as the basis function. The interval
s greatly affects the expression and generalization abilities of
an RBFN. In this experiment, we used two types of RBFN.
One is termed RBFN 441, whose parameters are s = 0.05, a
standard deviation of σ = 0.05, and 441 basis functions. The
other is termed RBFN 81, whose parameters are s = 0.125,
a standard deviation of σ = 0.125, and 81 basis functions.
Training was conducted using a gradient descent.

INGnet We used a normalized Gaussian function as the
basis function, which was additionally set during the learning
phase. We added a basis function when the absolute error
of the training was larger than the threshold value emax and
when the value of all existing basis functions was smaller than
the threshold value amin. The parameters were emax = 0.05,
amin = 0.5, and σ = 0.05. Training was conducted using a
gradient descent.

SDNN In this experiment, we used LIBSDNN1. The pat-
tern coding parameters were n = 400, q = 201, and r = 2.
The number of SPs m was set to 280, and the output of the
SDNN was calculated using 0.005k − 0.2, where k is the
number of SPs with outputs of 1.

Training was repeated until the absolute training error
reached below 0.01 for each function approximator.

3.2 Results

Table 1 shows the average approximation error over all
time steps, in which the error was lowest for the SDNN. Fig.
3 shows the temporal changes in the mean absolute error for
each function approximator.

1https://github.com/BIPL-HORIE/LIBSDNN

Figure 3: Temporal changes in approximation error

MLP exhibited the largest error at all time steps, indicating
that it is not good at online incremental learning. The error
of INGnet did not decrease during 1000 < t < 3000, proba-
bly because the number of bases increased with a decrease in
generalization ability and thus, the given samples were insuf-
ficient for INGnet to follow the changes in the target function.
Here, RBFN 81 reduced the error during the early time steps
and adapted to the gradual change at 1000 ≤ t < 3000, but
not to the abrupt change at t ≥ 3000, indicating that it is un-
able to represent a complex function with 81 basis functions.
However, RBFN 441 was able to fit the complex function but
reduced the error only slowly for t ≤ 1000 and could not
adapt to the gradual change during 1000 < t ≤ 3000, in-
dicating that it requires more samples. Thus, RBFN cannot
adapt to both sudden and incremental drifts.

In contrast, the SDNN was able to adapt to both drifts, in-
dicating that it can fit a simple target function with a small
number of samples, and can also represent a complex func-
tion.

4. Experiment Using Real-Time Dataset

We also applied an SDNN to the prediction of future clos-
ing prices of the Nikkei225 on the Tokyo Stock Exchange2

from previous closing prices. This price usually changes
gradually, but occasionally does so extremely rapidly, and
thus has been used in previous studies on concept drift [1, 2].

4.1 Methods

We used the same data (from May 19, 1979 to May 15,
2017) and procedure as in [1].

A simple method of handling streaming data with con-
cept drift is to use a sliding window that keeps the k newest
samples. These k samples are normalized and input into
an SDNN trained to predict the value N steps ahead (N =
1, 3, 5). Different SDNNs are used for different N . The
dataset consists of 4,906 samples d1, . . . , d4906. At time step

2https://finance.yahoo.com/quote/% 5EN225/

Journal of Signal Processing, Vol. 23, No. 4, July 2019 147



Table 2: Prediction errors for each method

N = 1 N = 3 N = 5

RMSE MAE RMSE MAE RMSE MAE

ARWin 299.45 222.12 387.99 290.04 467.19 351.94
SDNN 191.63 136.98 327.36 242.11 425.53 317.20

OPOSSAM
(for reference)

200.35 142.90 347.73 252.50 444.58 331.09

Figure 4: Stock price predicted by each approximator for the
last 200 time steps for N = 3

t, the SDNN receives k samples dt−N , . . . , dt−k−N+1, and is
trained to predict dt. At t > 1000, it also predicts d̂t+N from
xt, . . . , xt−k+1, and the prediction error between dt+N and
d̂t+N is calculated (we use both RMSE and MAE as metrics
of the prediction accuracy).

We used ARWin [2] for comparison.
ARWin ARWin has a sliding window of k in size, and

the sliding window induces k subwindows. Each subwindow
has the i newest samples (i = 1, . . . ,M ), which are used to
calculate a predicted value based on linear regression. The
output of ARWin is determined using the weighted sum of
these values, where the weights are updated through learning.
In this experiment, the window size k was set to 3, 4, . . . , 50,
according to [1].

SDNN We used LIBSDNN with the parameters n =
1250, q = 1251, r = 1, and m = 700. The window size
k was fixed to 50 for the SDNN. The 200-day moving av-
erage d̄t = (dt + · · · + dt−199)/200 was used as the base-
line, that is, the input variable was given by xi = dt−i+1/d̄t
(i = 1, . . . , 50), and d̂t+N was obtained by multiplying the
output value by d̄t.

4.2 Results

Table 2 shows the prediction errors, which indicate that
the SDNN can predict future prices much better than AR-
Win. This indicates that the SDNN is adaptable to changes in
the characteristics of the data. Fig. 4 shows the values pre-
dicted by ARWin and the SDNN for N = 3. ARWin exhibits
large prediction errors, particularly when significantly chang-
ing from a rising to falling trend or vice versa, but the SDNN
does not.

It should be noted that most of the error values of the
SDNN were smaller than those of OPOSSAM, which exhib-
ited the best performance in a previous study [1], although
we did not test that method ourselves. We also conducted the
same experiment using other data (from May 21, 1979 to May
19, 1997), and confirmed that the SDNN exhibited almost the
same performance, indicating the generality of the results.

5. Conclusions

We showed that an SDNN has an excellent capability for
online incremental learning for a time-variant function ap-
proximation. We also applied an SDNN to a real-world time-
series prediction task and obtained a superior performance
over existing methods. These results suggest that an SDNN
is highly suitable for certain types of concept drift problems.
In future research, we will apply an SDNN to other concept
drift problems to confirm its effectiveness.

Acknowledgment

This work was supported partly by JSPS KAKENHI, Grant
No. JP18H03304.

References

[1] A. Yamaguchi, S. Maya, T. Inagi and K. Ueno: OPOS-
SAM: Online prediction of stream data using self-
adaptive memory, IEEE International Conference on Big
Data, 2018.

[2] S. Yoshida, K. Hatano, E. Takimoto and M. Takeda:
Adaptive online prediction using weighted windows, The
IEICE Transactions on Information and Systems, Vol. E-
94-D, No. 10, pp. 1917-1923, 2011.

[3] K. Nonaka, F. Tanaka and M. Morita: Empirical com-
parison of feedforward neural networks on two-variable
function approximation, The IEICE Transactions on In-
formation and Systems (Japanese Edition), Vol. J-94-D-
II, No. 12, pp. 2114-2125, 2011.

[4] K. Horie, A. Suemitsu, T. Tanno and M. Morita: Direct
estimation of wrist joint angular velocities from surface
EMGs by using an SDNN function approximator, Pro-
ceedings of the 23rd International Conference on Neural
Information Processing (ICONIP), 2016.

148 Journal of Signal Processing, Vol. 23, No. 4, July 2019



[5] P. Auer, H. Burgsteiner and W. Maass: A learning rule
for very simple universal approximators consisting of a
single layer of perceptrons, Neural Networks, Vol. 21,
pp. 786-795, 2008.

[6] D. S. Broomhead and D. Lowe: Radial basis functions,
multi-variable functional interpolation and adaptive net-
works, Complex Systems, Vol. 2, No. 3, pp. 321-355,
1988.

[7] J. Morimoto and K. Doya: Learning dynamic motor se-
quence in high-dimensional state space by reinforcement
learning: Learning to stand up, The IEICE Transactions
on Information and Systems (Japanese Edition), Vol. J-
82-D, No. 11, pp. 2118-2131, 1999.

Journal of Signal Processing, Vol. 23, No. 4, July 2019 149




