
Q-Learning Using SDNN for Noisy and Redundant Inputs

Paper:

Q-Learning in Continuous State-Action Space
with Noisy and Redundant Inputs

by Using a Selective Desensitization Neural Network
Takaaki Kobayashi, Takeshi Shibuya, and Masahiko Morita

Faculty of Engineering, Information and Systems, University of Tsukuba
1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573 Japan

E-mail: {takaaki@bcl.esys., shibuya@iit., mor@bcl.esys.}tsukuba.ac.jp
[Received May 21, 2015; accepted August 18, 2015]

When applying reinforcement learning (RL) algo-
rithms such as Q-learning to real-world applications,
we must consider the influence of sensor noise. The
simplest way to reduce such noise influence is to addi-
tionally use other types of sensors, but this may re-
quire more state space – and probably increase re-
dundancy. Conventional value-function approxima-
tors used to RL in continuous state-action space do
not deal appropriately with such situations. The selec-
tive desensitization neural network (SDNN) has high
generalization ability and robustness against noise and
redundant input. We therefore propose an SDNN-
based value-function approximator for Q-learning in
continuous state-action space, and evaluate its perfor-
mance in terms of robustness against redundant input
and sensor noise. Results show that our proposal is
strongly robust against noise and redundant input and
enables the agent to take better actions by using ad-
ditional inputs without degrading learning efficiency.
These properties are eminently advantageous in real-
world applications such as in robotic systems.

Keywords: reinforcement learning, function approxima-
tor, continuous state-action, sensor noise, redundant in-
puts

1. Introduction

Reinforcement learning (RL) [1] is a framework for
trial-and-error-based interactive learning inspired by be-
havioral learning in animals. An agent working in this
framework learns behavior for acquiring maximum re-
wards based on its experience in the environment. RL en-
ables the agent to accomplish a task by simply rewarding
the agent, thus acting as a promising control for systems
such as robots in real-world environments.

In Q-learning [2], which is a widely used RL algorithm,
the agent decides an action based on two functions – ac-
tion value and policy – in which updating the action-value
function improves the agent’s behavior. With its proven
convergence property [3] and its easy implementation, Q-

learning is used frequently in applied research. When
Q-learning is applied in an environment with continuous
state-action space, the action-value function is generally
approximated by using a function approximator [1, 4–9].

In real-world applications, Q-learning agents suffer
from input uncertainty due to sensor noise. The sim-
plest way to solve this problem would be to additionally
use other types of sensors so that the noises from differ-
ent sensors can be mutually cancelled. This, however,
could enlarge state space and probably increase redun-
dancy. Agents with conventional value-function approxi-
mators thus require more samples for their learning.

For this reason, a Q-learning function approximator
should have the following properties when used in real-
world applications:

• High robustness against input uncertainty

• High learning ability and robustness against redun-
dant input

A recent study has demonstrated the superiority of se-
lective desensitization neural networks (SDNNs) in func-
tion approximation [10]. Using an SDNN, Horie et
al. [11] estimated hand motion speed from surface elec-
tromyograms, which are noisy and highly redundant in-
put. Their results suggest that the SDNN is very suitable
for function approximation involving noisy and redundant
input. This makes the SDNN a strong candidate for ap-
proximating the action-value function in continuous state-
action space with noisy and redundant state variables.

We propose an SDNN-based value-function approxi-
mator for Q-learning in continuous state-action space [12]
and evaluate its performance in terms of robustness
against redundant input [12] and sensor noise through a
series of numerical experiments. These experiments use
an acrobot swing-up task containing noisy and redundant
input.

This paper is organized as follows: Section 2 explains
the basic RL framework and the Q-learning algorithm,
together with widely used ways for approximating the
value-function. Section 3 proposes SDNN-C, a novel
function approximation. Section 4 reviews the results of
simulation experiments and Section 5 lists conclusions.

Vol.19 No.6, 2015 Journal of Advanced Computational Intelligence 825
and Intelligent Informatics

Kobayashi, T., Shibuya, T., and Morita, M.

2. Background

2.1. Reinforcement Learning
RL is a trial-and-error-based interactive learning frame-

work in which agents adjust their behavior to maximize
their rewards in the environment.

At discrete time step t, an agent observes its own state,
st , decides and takes action at , and obtains reward rt+1.
The agent learns suitable actions through this experience.
Learning and deciding actions are implemented by using
two functions—action value and policy.

Action-value function Q(s,a) is defined as the expected
total rewards from taking action a in state s. For a partic-
ular state-action pair, an action value is the value of the
action-value function and indicates the desirability of the
action. In RL, the agent updates its action-value function
by using a learning algorithm such as Q-learning.

Policy provides probabilities for selecting possible ac-
tions in certain states. A simple, well-known policy is the
ε-greedy policy, which encourages both exploration and
exploitation. This policy frequently leads to selecting the
action with the highest action value, but randomly with
low probability ε .

2.2. Q-Learning
Q-learning [2, 3], a widely used RL algorithm, updates

action-value function Q(st ,at) as

Q(st ,at)← (1−α)Q(st ,at)

+α
(

rt+1 + γ max
a′∈A (st+1)

Q(st+1,a′)
)

,(1)

where A (s) is a set of possible actions in state s. α ∈ [0,1]
is a learning rate and γ ∈ [0,1) is a discount rate.

Because Q(s,a) is stored as a look-up table, con-
ventional Q-learning cannot operate in continuous state-
action space.

2.3. Function Approximators
Action-values in continuous state-action space are of-

ten implemented by using a function approximator, which
represents the action-value by fewer parameters than a
look-up table.

The multilayer perceptron, although a well-known gen-
eral function approximator, is not suitable for directly ap-
proximating an action-value function because it is an of-
fline algorithm. This means that an additional mecha-
nism such as extra memory is required to store histories
of states, actions, and rewards [4].

Function approximators based on a previous knowl-
edge of action-value function landscapes have also been
proposed [5, 6], but are applicable only if there is previ-
ous knowledge available.

Linear methods such as tile coding [1], the radial basis
function network (RBFN) [1, 7] and fuzzy-based meth-
ods [8, 9] are often used to approximate a target function
by using a weighted linear sum of features. Although all

Fig. 1. SDNN-C structure.

of these methods perform well without previous knowl-
edge, they involve increasing difficulty as the numbers
of experience required grow exponentially with the state
space dimension [1]. This makes them unsuitable for the
approach of adding redundant sensors.

In short, available function approximators are not eas-
ily applied to Q-learning in continuous state-action space
with noisy and redundant input.

3. Proposal

We propose introducing SDNN-C, an SDNN-based
function approximator, for action-value functions.

3.1. SDNN-C Structure
SDNN-C has the six layers shown in Fig. 1.
Layer 1, which is the input layer, consists of l (l ≥ 2)

neural units, where l is the number of input signals. Each
unit corresponds to one input signal. The input signal vec-
tor is denoted by xxx.

Layer 2, which is a pattern coding layer for the state,
consists of l neural groups,

(
x̄xx 1, . . . , x̄xx l

)
. This group’s

units’ output are denoted x̄xx i. Each group corresponds to
one unit in layer 1 and outputs an m-dimensional binary

826 Journal of Advanced Computational Intelligence Vol.19 No.6, 2015
and Intelligent Informatics

Q-Learning Using SDNN for Noisy and Redundant Inputs

pattern on {−1,+1}m, where m is the number of units in
the group. The pattern is determined as follows:

1. Construct 9 random binary patterns (p̄pp1, p̄pp2, . . . , p̄pp9).

2. Construct 44 binary patterns by interpolating be-
tween p̄ppi and p̄ppi+1 (i = 1,2, . . . ,8).

3. Divide the output range of the corresponding unit in
layer 1 into 360 equal subranges.

4. Assign 360 patterns to each subrange, omitting p̄pp9.

Layer 3, which is a state desensitization layer, consists
of l× (l−1) neural groups, {x̄xx μ(ν) | μ,ν = 1, . . . , l; μ �=
ν}, where x̄xx μ(ν) denotes x̄xx μ desensitized by x̄xx ν . Desen-
sitization neutralizes outputs of units in x̄xx μ when the cor-
responding unit in x̄xx ν outputs −1, regardless of the unit
in x̄xx μ . The output of the k-th unit is given by

x̄ μ(ν)
k =

1+
(
σμν x̄xx ν)

k
2

x̄ μ
k ,

x̄ μ
k is the output of the k-th unit of x̄xx μ and σμν is an m-

dimensional permutation matrix that randomly permutes
units of x̄xx ν . For simplicity, a vector containing all x̄xx μ(ν)

for μ and ν (μ �= ν), is denoted by x̄xx SD.
Layer 4 consists of two different neural groups, i.e., ȳyy

and z̄zz. ȳyy is a pattern coding group for action y, and has
n units. It outputs an n-dimensional binary pattern repre-
senting the action determined by the following procedure:

1. Construct (n−n′−1) patterns, in which n′ represents
the number of 1s. The i-th element of the k-th pattern
is given by

q̄k,i =

{
+1 (if k≤ i < k +n′)
−1 (otherwise)

.

2. Divide the range of the action variable into
(n−n′ −1) equal subranges.

3. Assign these patterns to each subrange.

z̄zz is a hidden layer with n units. Every unit in z̄zz is con-
nected to every unit in layer 3. The output of the i-th unit
of z̄zz is given by

z̄i = φ
(

www�i x̄xx SD−wi0

)

= φ

(
ml(l−1)

∑
j=1

wi jx̄ SD
j −wi0

)
,

where

φ(u) =

{
1 (u > 0)
0 (otherwise)

,

x̄ SD
j is the j-th element of x̄xx SD, wi j is a synaptic weight

between the j-th unit in layer 3 and the i-th unit in
z̄zz of layer 4 and wi0 is a threshold. The quantity(
www�i x̄xx SD−wi0

)
is called the inner potential of the unit.

Parameters wi j and wi0 are updated as detailed in the next
section.

Layer 5 is a desensitization layer by action and has n
neural units. The output of the i-th unit in this layer is
calculated by

z̄i(ȳi) =
1+ ȳi

2
z̄i.

Layer 6, which is the output layer, has single output
unit z, which is determined from the number of units out-
putting +1 in layer 5. The output of layer 6 is calculated
as follows:

z = Q(xxx,y)

= g

(
∑
i∈I

z̄i(ȳi)

)
,

where I is index set I = {1,2, . . .,n} and g(u) is a scaling
function. z is also given by

z = g

(
∑

j∈J(y)
z̄ j

)
,

where J(y) = { j : ∀ j ∈ I, ȳ j = 1}.

3.2. SDNN-C Learning
SDNN-C learns based on error correction training.
When an agent moves to successive state st+1 and re-

ceives reward rt+1, it updates its action-value function by
updating synaptic weights wi j and threshold wi0. This up-
dating is done to minimize the distance between the cur-
rent action value and a new action value given by Eq. (1).

Let z be the current action value and ẑ be the new ac-
tion values. Let u be the number of units outputting +1
in layer 5. Let û be the estimated number of units sat-
isfying ẑ = g(û). These variables determine the synaptic
weights and thresholds to be updated and their updated
values. The learning algorithm is detailed in Fig. 2.

4. Simulation Experiments

We conducted two simulation experiments to assess the
effectiveness of our proposed SDNN-C. In these experi-
ments, we used an acrobot swing-up task that differs in
two ways from the original version [1]. Difference 1 is
the continuity of state-action space. In these experiments,
we used continuous state-action space. Difference 2 is the
condition for completing the task. We set limits on the
angular velocities for the two links and made it tighter as
episodes elapsed. This condition gradually requires more
precise action selection and contributes to evaluating the
accuracy of the action-value function against continuous
action. SDNN-C is used to approximate the action-value
function for Q-learning. We quantified SDNN-C perfor-
mance for the following points:

• The number of episodes required to learn a suitable
action-value function

Vol.19 No.6, 2015 Journal of Advanced Computational Intelligence 827
and Intelligent Informatics

Kobayashi, T., Shibuya, T., and Morita, M.

1. Divide a set of units not neutralized by the desen-
sitization process in layer 4 into |û− u| subsets
Z1,Z2, . . . ,Z|û−u|, preserving index order. Subsets
should be of equal size, as far as possible.

2. If possible, select one unit in each set Zi as follows:
(a) if z is greater than ẑ, select the unit with the low-
est magnitude of inner potential that outputs +1;
(b) if z is less than ẑ, select the unit with the lowest
magnitude of inner potential that outputs 0.

3. Update the synaptic weights and thresholds of se-
lected units by Eqs. (2) and (3), respectively.

wi j ← wi j + c sgn(û−u) x̄ SD
j (2)

wi0 ← wi0− c sgn(û−u) , (3)

where sgn(·) is the sign function, and c is a learning
coefficient.

Fig. 2. SDNN-C learning algorithm.

Fig. 3. Acrobot.

• The number of episodes until the number of steps per
episode becomes larger again

• The number of steps in the final episode if an agent
achieves a goal stably by the final episode

In experiment A, we confirm SDNN-C efficiency in
continuous state-action space with redundant input. In ex-
periment B, we confirm SDNN-C robustness in continu-
ous state-action space with noisy and redundant input.

4.1. Acrobot Swing-Up Task
The acrobot [13] scheme is shown in Fig. 3. This un-

deractuated two-link manipulator is commonly used as an
RL benchmark in continuous state spaces [1, 5]. Joint
1 of the acrobot is freely movable and affixed to a wall.
Joint 2 has an actuator that outputs the torque set by the
controller. Torque τ is set from−10 Nm to +10 Nm. The
agent selects one action in action set A = {−10,−10 +

1/300,−10 + 2/300, . . .,0, . . . ,10− 1/300,10} given by
equal divisions of the torque range. The state of the ac-
robot is described by angles θ1, θ2 ∈ [−π,π) and angular
velocities θ̇1, θ̇2. We set physical parameters as follows:
Link masses m1 = m2 = 1 kg; Link lengths l1 = l2 = 1 m;
Distances to the center-of-mass of links lc1 = lc2 = 0.5 m;
Moments of inertia of links I1 = I2 = 1 kg ·m2; Gravita-
tional acceleration g = 9.8 m/s2.

The agent’s goal in this task was to swing the tip of link
2 above the goal level in the minimum time and to mo-
mentarily stop it at the goal height. This task consists of
subsequences called episodes. Each episode began with
an initial state, (θ1, θ2, θ̇1, θ̇2) = (0,0,0,0). The agent
controlled the acrobot at 1-s intervals toward the goal. The
agent reached the goal if the current state of the acrobot
satisfied the following two conditions:

1. The tip reached 1.5 m above joint 1.

2. |θ̇1|< 3πλ and |θ̇2|< 5πλ ,

where variable λ specifies the difficulty in reaching the
goal. λ is defined as

λ =

{
10−(1+ k−1

10000−1) (k≤ 10000)
10−2 (k > 10000)

,

where k is the number of episodes. Note that reaching
the goal becomes increasingly difficult as the number of
episodes increases. If the acrobot attains its goal or fails
to reach it within 50 s, it is restored to its initial state and
a new episode is begun.

If the agent reaches its goal, it receives +10 as a reward.
If |θ1| is below 5◦ or angular velocities θ̇1，θ̇2 are outside
of sensor range [−3π,3π], [−5π,5π], it receives −5. In
all other states, it receives no reward whatsoever.

Initial outputs of function approximators were set to
zero in all states and actions because we lacked previous
knowledge of the acrobot completing this task.

4.2. Experiment A
In experiment A, we compare two cases: that with ad-

ditional redundant inputs and that without.

4.2.1. Experimental Setup

The agent observed four normalized state variables
s1, . . . ,s4 given by

s1 =
θ1

2π
+0.5,

s2 =
θ2

2π
+0.5,

s3 = fsat

(
θ̇1

6π
+0.5

)
,

s4 = fsat

(
θ̇2

10π
+0.5

)
,

828 Journal of Advanced Computational Intelligence Vol.19 No.6, 2015
and Intelligent Informatics

Q-Learning Using SDNN for Noisy and Redundant Inputs

fsat(x) is a saturation function defined as

fsat(x) =

⎧⎨
⎩

1 (1≤ x)
x (0≤ x < 1)
0 (x < 0)

.

Two types of redundant inputs, s5 ∈ [0,1] and s6 ∈ [0,1],
were used. s5 is the simplified kinetic energy of the ac-
robot and s6 is the normalized height of the acrobot from
joint 1. These were given by

s5 = 2
(
(s3−0.5)2 +(s4−0.5)2

)
,

s6 =
1
4

(
cos(2πs1)− cos(2π(s1 + s2))

)
+0.5.

In this task, the agent was required to sequentially se-
lect correct actions. To prevent random actions from be-
ing selected during this evaluation, we specified two types
of episodes—learning episodes and test episodes. Dur-
ing a learning episode, the agent determined action based
on the ε-greedy policy and learned the action-value func-
tion. During the first 10 steps, probability ε was set to 0
and thereafter to 0.1. RL parameters were α = 0.5 and
γ = 0.9. After each interval of 10 learning episodes, one
test episode was executed. During a test episode, the agent
used the greedy policy without learning the action-value
function. The test episode evaluated the agent’s perfor-
mance throughout previous learning episodes.

We conducted 10 trials and evaluated the number of
steps per test episode in each case. Each trial consisted of
15,000 learning episodes and 1500 test episodes.

SDNN-C parameters were m = 200, n = 900, n′ = 300,
and c = 0.1, enabling SDNN-C to express 601 action val-
ues. The output range of SDNN-C was [−20,20], and the
scaling function g(u) in layer 6 was defined by

g(u) =

⎧⎪⎪⎨
⎪⎪⎩

20 (280 < u)
2

13
u− 300

13
(20≤ u≤ 280)

−20 (u < 20)

.

All synaptic weights were assigned a small random value.
Even-numbered units were assigned large positive thresh-
olds and odd-numbered large negative thresholds.

4.2.2. Experiments and Results
Experiment A results are shown in Fig. 4. The verti-

cal axis indicates the number of steps in the test episode
for each learning episode and the median number of steps
among 10 trials is plotted.

These graphs show that the SDNN-C agent learned the
action-value function within about 150 learning episodes,
finally achieved the goal within 10 steps in both cases.
This shows the robust performance of our proposal in re-
dundant state space dimensions.

The computational cost of SDNN-C increased quadrat-
ically as the number of inputs increased, whereas the cost
of a conventional method such as RBFN increased expo-
nentially. This property is advantageous in the case of

(a) The SDNN-C agent observing only 4 normalized state variables.

(b) The SDNN-C agent observing 4 normalized state variables plus 2
redundant variables.

Fig. 4. Experiment A results.

redundant input. In a case of 6-dimensional state space,
for example, computation time for one step using SDNN-
C and RBFN with 4 basis functions for each dimension
was about 50 ms and 200 ms, respectively. Note that the
higher the dimension, the greater the difference between
RBFN and SDNN-C.

4.3. Experiment B
In experiment B, we conducted simulation experiments

using an acrobot swing-up task with noisy sensor input to
confirm SDNN-C robustness against noise and redundant
input. We also used SDNN-C as a value function approx-
imator for Q-learning. Although RBFN is well known as
a function approximator in RL, it could not be used for
this experiment due to its high computational cost. In this
experiment, we used fuzzy Q-learning comparatively be-
cause its computational cost is low enough below RBFN
on the parameters configured to make them perform at the
same level approximation accuracy.

4.3.1. Fuzzy Q-Learning
For comparison, we used Jouffe’s fuzzy Q-learning

(FQL) algorithm [8]. The FQL agent has N rules activated
for different states. Each rule Ri has parameter vector vi

representing the desirability of actions in discrete action
set U .

The agent selects action at based on activated rules and
its parameter vectors as follows:

at = ∑
Ri∈A(st)

ε-Greedy(vi) ·αRi ,

A(st) is the activated rule set in state st , αRi is the out-
put of rule Ri (called a truth value) and ε-Greedy(·) is a
function that selects a discrete action in U based on vi. In

Vol.19 No.6, 2015 Journal of Advanced Computational Intelligence 829
and Intelligent Informatics

Kobayashi, T., Shibuya, T., and Morita, M.

Table 1. Cases of redundant state space.

Name of case Components of state observed by the
agent

Case I (s1,s2,s3,s4)
Case II (s̃1, s̃2, s̃3, s̃4)
Case III (s̃1, s̃2, s̃3, s̃4, s̃5)
Case IV (s̃1, s̃2, s̃3, s̃4, s̃5, s̃6)

his original study, Jouffe proposed and used another type
of ε-greedy function, but in this experiment, we used the
same function applied to SDNN-C.

Parameter updating is based on Eq. (1)

∀Ri ∈ A(st),

vi[ai
t]← vi[ai

t]+ c (rt+1 + γQ∗t (st+1)−Qt(st ,at))αRi ,

vi[ai
t] is a parameter for the action selected by rule Ri at

time t, c is a learning coefficient and Q∗(s) represents the
optimal action value in state s. Q∗t (st+1) and Qt(st ,at) are
calculated by

Q∗t (st+1) = ∑
Ri∈A(st+1)

(
max
a∈U

vi[a]
)

αRi ,

Qt(st ,at) = ∑
Ri∈A(st)

vi[ai
t]αRi .

4.3.2. Experimental Setup
Experiment B was conducted for the four cases in Ta-

ble 1. Case I contained no redundant input or sensor
noise.

In contrast, in case II, state variables observed by the
agent included independent Gaussian noise, which were
calculated as follows:

s̃1 = fwrap (s1 + e1) ,
s̃2 = fwrap (s2 + e2) ,
s̃3 = fsat (s3 + e3) ,

s̃4 = fsat (s4 + e4) ,

ei(i = 1, . . . ,4) is Gaussian noise (mean μ = 0 and stan-
dard deviation σ = 0.02) and fwrap(x) is a function that
wraps x to the interval [0,1].

In cases III and IV, the agent also observed noisy and
redundant inputs s̃5 and s̃6, given by

s̃5 = fsat (s5 + e5) ,

s̃6 = fsat (s6 + e6) .

FQL parameters were determined by preliminary ex-
periments. Specifically, each state dimension was parti-
tioned at even intervals with nine triangular membership
functions. The number of fuzzy rules N was 9d , where
d is the total number of state dimensions. Discrete ac-
tion sets U of these rules were the same for all rules, and
contained 21 actions given by equally dividing the torque
range.

Trial settings and the parameter of SDNN-C and Q-
learning were the same as those used in experiment A.

Fig. 5. Experiment B results for Case I.

(a) Case II: containing no redundant variable

(b) Case III: containing 1 redundant variable s̃5

(c) Case IV: containing 2 redundant variables s̃5 and s̃6

Fig. 6. Experiment B results for Cases II–IV.

4.3.3. Experiments and Results

Experiment B results are presented in Fig. 5, represent-
ing case I, and Fig. 6, representing cases II–IV, where the
median number of steps with SDNN-C and FQL among
the 10 trials is plotted.

We compared the influence of sensor noise on both
methods in Figs. 5 and 6(a). These graphs show that
the performance of the FQL agent depended strongly on
the presence or absence of sensor noise. Although the
FQL agent could learn within approximately 100 episodes
in a noise-free case, it failed to learn stable upswing ac-
tions even in the early episodes in the noisy case. In case

830 Journal of Advanced Computational Intelligence Vol.19 No.6, 2015
and Intelligent Informatics

Q-Learning Using SDNN for Noisy and Redundant Inputs

II, SDNN-C agent performance in early episodes was al-
most equal to both methods in case I. After that, it began
worsening at about episode 7,500, and the agent failed to
achieve the goal stably due to the relative increase in the
noise influence.

Figure 6 shows that the FQL agent failed to learn sta-
ble upswing actions due to the effect of sensor noise in all
cases. In contrast to FQL in early episodes, the SDNNC
agent learned the suitable action-value function within al-
most the same number of episodes regardless of additional
redundant input. The SDNN-C agent in case III kept a
suitable action selection until a later episode than in case
II. In particular, in case IV, the SDNN-C agent finally
achieved the goal in about 4 steps, which is almost the
same as in case I. Although SDNN-C performance may
depend on the type of additional input, noise tolerance
tended to improve as the number of redundant inputs in-
creased.

Based on these results, we confirmed that SDNN-C is
strongly robust against sensor noise and redundant input
and takes better actions by using information from addi-
tional inputs. We consider that these properties are real-
ized thanks to powerful, nonlocal generalization and the
high representation capability of SDNN, by which, de-
signing state space may become easier as system design-
ers are enabled to add any input that may be related to
control.

5. Conclusions

We have proposed SDNN-C, novel value-function ap-
proximation for Q-learning in continuous state-action
space based on SDNN. We evaluated this method in an
acrobot task extended to continuous state-action space in-
cluding noisy and redundant input. In experiment A, we
confirmed that SDNN-C is applicable to continuous state-
action space with redundant input. Experiment B results
demonstrated that SDNN-C is strongly robust against sen-
sor noise and redundant input, thus enabling an agent to
take better action by using additional input without learn-
ing efficiency deteriorating. We consider that these prop-
erties have been realized by the powerful, nonlocal gener-
alization and the high representation capability of SDNN.
These are advantageous in real-world applications such as
robotic systems.

In future studies, we plan to apply our proposal to ex-
tend methods to multidimensional action space. We also
plan to experimentally compare the performance of our
proposed method to that of other RL algorithms such as
actor–critic methods.

Acknowledgements
This study was supported partly by JSPS KAKENHI Grant Num-
bers 22300079, 24760308, and 26590173.

References:
[1] R. S. Sutton and A. G. Barto, “Reinforcement Learning: An Intro-

duction,” MIT Press, 1998.
[2] C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. thesis,

University of Cambridge, 1989.
[3] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,

Vol.8, pp. 279-292, 1992.
[4] C. Gaskett, D. Wettergreen, and A. Zelinsky, “Q-learning in contin-

uous state and action spaces,” Proc. 12th Australian Joint Conf. on
Artificial Intell., Sydney, pp. 417-428, 1999.

[5] G. Konidaris, S. Osentoski, and P. Thomas, “Value function approx-
imation in reinforcement learning using the Fourier basis,” Proc.
25th Conf. on Artificial Intell., San Francisco, pp. 380-385, 2011.

[6] A. Geramifard, M. Bowling, and R. S. Sutton, “Incremental least-
square temporal difference learning,” Proc. 21th Conf. on Artificial
Intell., Boston, pp. 356-361, 2006.

[7] J. Park and I. W. Sandberg, “Universal approximation using
radial-basis-function networks,” Neural Computation, Vol.3, No.2,
pp. 246-257, 1991.

[8] L. Jouffe, “Fuzzy inference system learning by reinforcement meth-
ods,” IEEE Trans. on Systems, Man, and Cybernetics, Part C: Ap-
plications and Reviews, Vol.28, No.3, pp. 338-355, 1998.

[9] P. Y. Glorennec, “Reinforcement learning: An overview,” Proc. Eu-
ropean Symposium on Intelligent Techniques (ESIT-00), Aachen,
pp. 14-35, 2000.

[10] K. Nonaka, F. Tanaka, and M. Morita, “Empirical comparison of
feedforward neural networks on two-variable function approxima-
tion,” IEICE Trans. Inf. & Syst.(Japanese Edition), Vol.94, No.12,
pp. 2114-2125, 2011.

[11] K. Horie, A. Suemitsu, and M. Morita, “Direct estimation of hand
motion speed from surface electromyograms using a selective de-
sensitization neural network,” J. Signal Process., Vol.18, No.4,
pp. 225-228, 2014.

[12] T. Kobayashi, T. Shibuya, and M. Morita, “Q-learning in Contin-
uous State-Action Space with Redundant Dimensions by Using a
Selective Desensitization Neural Network,” Proc. SCIS&ISIS 2014,
Kitakyushu, pp. 801-806, 2014.

[13] M.W. Spong, “The swing up control problem for the acrobot,” IEEE
Control Syst. Mag., Vol.15, No.1, pp. 49-55, 1995.

Name:
Takaaki Kobayashi

Affiliation:
Faculty of Engineering, Information and
Systems, University of Tsukuba

Address:
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573 Japan
Brief Biographical History:
2006- College of Engineering Systems, University of Tsukuba
2010- Department of Intelligent Interaction Technologies, University of
Tsukuba
2015- Faculty of Engineering, Information and Systems, University of
Tsukuba
Main Works:
• Neural networks and reinforcement learning
• “Q-Learning in Continuous State-Action Space by Using a Selective
Desensitization Neural Network,” IEICE Trans. Inf. & Syst. (Japanese
Edition), Vol.98, No.2, pp. 287-299, 2015.

Vol.19 No.6, 2015 Journal of Advanced Computational Intelligence 831
and Intelligent Informatics

Kobayashi, T., Shibuya, T., and Morita, M.

Name:
Takeshi Shibuya

Affiliation:
Faculty of Engineering, Information and
Systems, University of Tsukuba

Address:
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573 Japan
Brief Biographical History:
2007-2010 Ph.D. Candidate, Graduate School of Engineering, Yokohama
National University
2007-2010 Research Fellow, the Japan Society for the Promotion of
Science
2011- Assistant Professor, University of Tsukuba
Main Works:
• “Complex-Valued Reinforcement Learning: a Context-Based Approach
for POMDPs,” Advances in Reinforcement Learning, pp. 255-274, InTech,
2011.
Membership in Academic Societies:
• The Institute of Electrical and Electronics Engineers (IEEE)
• Institute of Electronics, Information and Communication Engineers
(IEICE)
• The Institute of Electrical Engineers of Japan (IEEJ)

Name:
Masahiko Morita

Affiliation:
Faculty of Engineering, Information and
Systems, University of Tsukuba

Address:
1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573 Japan
Brief Biographical History:
1991 Received Doctoral degree of Engineering from the University of
Tokyo
1992.6-2000.3 Lecturer, University of Tsukuba
2000.3-2007.3 Assistant Professor, University of Tsukuba
2007.4-2007.5 Associate Professor, University of Tsukuba
2007.6- Professor, University of Tsukuba
Main Works:
• Biological information processing and neural computation
• “Associative memory with nonmonotone dynamics,” Neural networks,
Vol.6, No.1, pp. 115-126, 1993.
Membership in Academic Societies:
• The Society of Instrument and Control Engineers (SICE)
• The Institute of Electronics, Information and Communication Engineers
(IEICE)
• Japanese Neural Network Society (JNNS)

832 Journal of Advanced Computational Intelligence Vol.19 No.6, 2015
and Intelligent Informatics

