Neural Networks, Vol. 6, pp. 115-126, 1993
Printed in the USA. All rights reserved.

ORIGINAL CONTRIBUTION

0893-6080/93 $6.00 + .00
Copyright © 1993 Pergamon Press Ltd.

Associative Memory With Nonmonotone Dynamics

MASAHIKO MORITA

University of Tsukuba

(Received 6 January 1992; revised and accepted 25 June 1992)

Abstract— The dynamics of autocorrelation associative memory is examined, and a novel neural dynamics which
greatly enhances the ability of associative neural networks is presented. This dynamics is such that the output of
some particular neurons is reversed (for a discrete model) or the output function is not sigmoid but nonmonotonic
(for an analog model). It is also shown by numerical experiments that most of the problems of the conventional
model are overcome by the improved dynamics. These results are important not only for practical purposes but also
for understanding dynamical properties of associative neural networks.
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of correlated patterns.

1. INTRODUCTION

The autocorrelation type of associative memory (au-

tocorrelation model) is one of the most fundamental

models of neural networks. It was proposed about 20

years ago (Anderson, 1972; Kohonen, 1972; Nakano,

1972) and has been studied by many researchers since

then (e.g., Amari, 1977; Amit, Gutfreund, & Sompo-

linsky, 1985; Gardner, 1986).

However, we do not yet understand its dynamics well
because an associative neural network is generally a
complex nonlinear system and is difficult to analyze
mathematically. At the same time, the autocorrelation
model presents major problems as an associative mem-
ory device.

1. Memory capacity is very low: The maximal number
of patterns that can be exactly stored in a network
with n neurons is only about n/(2 log n) (McEliece,
Posner, Rodemich, & Venkatesh, 1987). Even if we
permit a small amount of error, it is 0.15# at most.

2. Basins of attraction of stored patterns are small and
so the recollection ability is not very great.

3. There are many spurious memories, namely equi-
librium states different from stored patterns, whose
number increases exponentially with n. Moreover,
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we cannot distinguish them from true memories if

we only see the outputs of the neurons.

4. Stored patterns must be nearly orthogonal to each
other. Otherwise, the performance of the model is
greatly decreased (see Section 5).

Although many modified models have been pro-
posed so far, not all of these problems have been settled.
On the contrary, we may say that associative memory
has hardly made progress in fundamental principles.

It was reported recently that the autocorrelation
model shows strange dynamic behavior in recollection
(Amari & Maginu, 1988), which seems to cause a de-
cline in the capacity of the model. While examining
this phenomenon, I noted that there is room for im-
provement in the conventional neural dynamics which
had not changed essentially since McCulloch and Pitts
(1943) proposed their neuron model.

This paper reports that by modifying the conven-
tional recollection dynamics, we can improve the au-
tocorrelation model greatly and solve the above prob-
lems. This research also aims to deepen our under-
standing of the dynamics of neural networks.

2. DYNAMICS OF ASSOCIATIVE MEMORY
2.1. Autocorrelation Associative Memory

First let us consider a discrete type of neural network
consisting of n neurons with outputs +1. We represent
the connection weight from the j-th neuron to the i-th
by w; and the output of the i-th neuron at time ¢ by
x;(t). This network has 2" possible states, and the cur-
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rent state is described by an n-dimensional vector X =
(x1, ..., x,)T, where superscript T denotes the trans-
pose. We will denote the network state at time ¢ by X,.

Let S', S% ..., S™ be binary patterns (represented
by column vectors) to be stored and s# (= *1) be the
i-th component of S*. We assume that #» and m are
sufficiently large and that S* is randomly chosen out
of the 2" possible patterns. Then these patterns are al-
most orthogonal to each other, i.e.,

M

stsi =0 (u#v). (1)

S | —

i=1

In an autocorrelation associative memory, the S* (u
=1,...,m)are stored in the network using the weight
matrix W = [w;] given by

N (2)
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nli

#

We usually set w; = 0. Although there are various ver-
sions of the dynamics for recalling stored patterns, we
deal here with the simplest one:

xi(2 -+ 1)=Sgn(2 Wi/xj(l)>> (3)
j=1

where sgn(u) = 1 when u > 0 and —1 when u < 0.

That is, the network changes its state at discrete times

t=20,1,2,...according to

Xy = sgn(W X)), (4)

where the function sgn operates componentwise on
vectors.
During this process, the energy of the network

M=

Ezf

DO |

i

n
> Wy X X; ()
1j=1

decreases with time (Hopfield, 1982) so that the net-
work state finally settles in an equilibrium correspond-
ing to a local minimum of the energy.* Since E can be
rewritten as

m n 2
-3 = Zarx), 6)
i=1
it is considered that E has a minimum at S*.
Consequently, when an initial state sufficiently close
to a stored pattern is given, the network state X is ex-
pected to reach an equilibrium which is identical or
very close to the stored pattern. Conversely, we can
define the set of initial states from which X reaches an
equilibrium X; this set is called the basin of attraction

* Strictly, this holds true only if the network acts asynchronously.
There can be limit cycles of period 2 if the dynamics is synchronous.
However, it is virtually irrelevant to the following discussions.
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of X and its size is an index of the recollection ability
of the model.

2.2. Recalling Process

The actual recalling process, however, is not so simple
that X consistently approaches the target pattern (say,
S, as shown by Amari and Maginu (1988). Figure
1 shows how the overlap p between X and S' changes
with time when initial states are given with various
distances from S'. Here, the overlap p is defined by

is}xi, (7)

and p = | implies X = S'.

We can see that if the initial overlap p, is smaller
than a critical value p,, it initially increases but soon
decreases (Figure 1a). In such a case, the network state
converges to an equilibrium state which is very different
from the stored patterns, i.e., a spurious memory is
recalled.

The decrease in the overlap is always observed if the
pattern-to-neuron ratio r = m/# is greater than about
0.15, as shown in Figure 1b. No matter how large the
initial overlap may be, X retreats from S'. Even in this
case, X once comes rather close to S', which suggests
that the network has not lost the information on the
stored patterns.

Why do these apparently strange phenomena occur?
Amari and Maginu (1988) have analyzed them using
a statistical neuro-dynamical method (see also Meir &
Domany, 1987), but it is complicated and not easy to
understand intuitively. Here we will examine the re-
calling process from a different angle.

First, we introduce a quantity

m n 2
HzZGZﬂmy (8)
p=2 i=1

or the sum of squares of the overlaps with all the stored
patterns except S'. When X, is given at random, o =~
rbecause 2; s x; (v =2, ..., m) are independent sub-
ject to normal distribution with mean of 0 and variance
of 1/#x. Similarly, 62 ~ ¥ when X = S

Figure 2 shows how this quantity ¢ changes during
the recalling process in some numerical experiments.
The ordinate of the graph is p? and the abscissa is o2
Each segment of the lines represents one state transition
of the network. It should be noted that the sum of p?
and o2 increases with time since from eqn (6),

p2+0'2=—%E. (9)

The results shown in Figure 2 indicate the following:
1. At first, both p? and o2 increase. If 62 does not grow
too much, then it will become small again and S'
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FIGURE 1. Time courses of the overlap p between the network state X and the object pattern S' in the numerical experiment with
n =1000: (a) r = 0.08; (b) r = 0.2. Initial states are randomly chosen from among the states having a certain overlap with S'.

is recalled; but if it once becomes too large, p? will

decrease instead of ¢2 and recollection is unsuc-

cessful (Figure 2a). Intuitively, this means that X

does not go straight toward S* but goes “deviously”

because it is attracted by other stored patterns, as

shown schematically in Figure 3.

2. When r = 0.2 (>0.15), ¢? always increases with
time (Figure 2b). We may suppose that the stored
pattern is a saddle point of the energy function (see
Figure 4). The energy is lower at S! than at almost
all the states around it, but there exist a very small
number of states where the energy is still lower.
Through these states, X retreats from S'.

Of course these illustrations are not exact because
the state space is actually n-dimensional, but they are
useful for understanding the dynamic behavior of the
network.

3. IMPROVING THE RECOLLECTION
DYNAMICS

The preceding findings show that many of the problems
of conventional associative memory are closely con-
nected with the dynamical properties of the network.
This implies that in order to solve the problems, we
should improve the recollection dynamics rather than
the manner of storing patterns, though the major effort
has been directed to designing the weight matrix and
the learning algorithm. That approach is promising
since even the ordinary autocorrelation matrix given
by eqn (2) contains more information than is actually
used by conventional dynamics.

From this point of view, we will try to improve the
autocorrelation model by modifying only the manner
of recollection.
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FIGURE 2. Processes of recollection in the autocorrelation model: {(a) r = 0.08; (b) r = 0.2. The abscissa is the square sum of the
overlaps of X with the stored patterns other than S'. Each segment of lines represents one step of the state transition. Initial states
are distributed along the line o2 = r, and S is located near the point (r, 1).

3.1. Partial Reverse Method

As a modification to neural dynamics, we often put
“thermal noise” in neural networks since this makes
it possible for the network state to avoid local minima
of the energy. But this is not effective for associative
memory models because such noise almost always de-
creases p and increases o2 when X is near S

However, if we can move X not at random but in
such a direction in Figure 2 that only ¢ is reduced,
we will be able to enhance the recollection ability of
the network. Intuitively, this operation means making
X distant from patterns S” (v # 1) while keeping the
distance from S constant (Figure 5). This is the basic
idea of the “partial reverse method” (Morita, Yoshi-
zawa, & Nakano, 1990a).

Since x; takes 1 or —1, moving the network state X
in a certain direction is “reversing,” that is to say,
changing the sign of, the outputs of certain neurons.
The important point is how to determine such neurons.
We must increase the energy of the network with the
least possible decrease in p. I will show a concrete al-
gorithm for realizing this, which may not be optimum,
but is simple and effective.

3.2. Algorithm

One step of recollection is divided into two phases, 1
and II. Conventional dynamics is used in the first phase,
and the outputs of some neurons are reversed in the
second. These phases are iterated alternately.
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FIGURE 3. Schematic representation of the recalling process.
The network state goes around to S' or reaches a spurious
memory because it is attracted by other stored patterns S”
(v=2,...,m).

More definitely, in phase I, the weighted sum of the
input is calculated:

u; = En: wyx;(1). (10)
J=1

The output in this phase is given by
Xx; = sgn(u;). (11)

In phase II, only the neurons which satisfy |u;| >
h (>0)in eqn (10) emit their outputs, and the weighted
sum v; with respect to these outputs is calculated:

FIGURE 4. Schematic energy function around $* whenr > 0.15.
The gradient of E is negative toward S" almost everywhere
except in the narrow ravines reaching S’, through which X re-
treats from S".
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FIGURE 5. Basic idea of the partial reverse method. The network
state is moved so that the distances from S increase but the
distance from S does not.

v =2 wyd(u;), (12)
j=1
where
-1 (u<~h),
P(u)y=< 0 (—h=u=<h), (13)
1 (u> hy.

The final output is determined by
X; = sgn(u; — Av;), (14)

X being a positive constant. As a result, x; obtained in
phase I is reversed when

0<¥ <\ (15)
U;
is satisfied.
More briefly, this dynamics can be expressed by

Xerr = sgn(W(X, — M(W X)), (16)

where the function ¢ operates componentwise on vec-
tors. We should note that X does not always converge
to an equilibrium.

Equation ( 16) implies that the influence of neurons
with a large value of |u;| should be reduced. This is
because such neurons are the cause of the increase in
o2 Note that the energy can be rewritten as

M s

B |

=1

when the dynamics is conventional and the network is
in an equilibrium state.

Here, the values of parameters 7 and A must be de-
termined carefully. Good performance is obtained in
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FIGURE 6. Time courses of the overlap p in the autocorrelation model with the partial reverse method: (a) r = 0.08; (b) r = 0.2. All
the experimental conditions are the same as for Figure 1, except for the use of improved dynamics.

numerical experiments when A ~ 2.7 and / is between
1.8 and 2.0; if the pattern-to-neuron ratio r is known,

h=1+20Vr (18)

1s recommended. If values of the parameters are deter-
mined appropriately, the number of neurons which
satisfy | u;| > h is small when X is close to S*. Reversing
of the sign of x; in phase II, therefore, seldom occurs
when recollection is successful, provided r is not too
large. Conversely, numerical experiments show that we
may judge the recollection to be correct if no reversing
occurs at an equilibrium state.

Incidently, replacing the first X, on the right side of
eqn (16) with sgn (W X,) and setting Y(u) = sgn(u) —
A¢(1), we obtain a simpler algorithm expressed by

Xerr = sgn(WHW X)), (19)

which is an algorithm of applying two output functions
sgn(u) and Y(u) alternately. However, this modified
algorithm shows worse performance than the original,
though it is better than conventional dynamics.

3.3. Numerical Experiments

Figure 6 shows the time courses of the overlap p when

the partial reverse method is applied with parameters

AN=27,h=157forr=0.08 and 1 = 2.09 for r = 0.2

according to eqn ( 18). From this figure, we can see the

following:

1. The critical overlap p, is smaller than for conven-
tional dynamics. This means that the recollection
ability of the network is raised.

2. The time (the number of steps) required for com-
pleting recollection is decreased.
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FIGURE 7. Processes of recollection with the partiai reverse method: (a) r = 0.08; (b) r = 0.2. The solid and broken lines represent
the state transitions in the first and the second phases, respectively.
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3. Correct recollection is possible even if r > 0.13, i.e.,
memory capacity increases. The upper limit of r is
about 0.27, though this depends on the parameters.
Figure 7 shows the time courses of the pair (o2, p?)

as in Figure 2, where the solid and broken lines represent

the state transitions in phases I and II, respectively. We
see that X approaches S in phase II rather than in phase

I, contrary to the illustration in Figure 5.

4. NONMONOTONE DYNAMICS

Next, let us consider a network consisting of analog
neurons with continuous-time dynamics:

du; "
P S W,
dl o yrzi
yi= flu). (20)

Here, 1, denotes the instantanecous potential of the i-
th neuron, y, the output and 7 a time constant; f(u) is
the output function, which is normally a monotonic
sigmoid function (Figure 8a) given by

1 —exp[—cul

1 +exp[—cul]’ (21)

Su) =
¢ being a positive constant. For convenience, we put X;
=sgn(u;)and call X = (x,,..., x,)” the network state
as before, though the current state of the network is
specified by vector U = (uy, . .., u,)! rather than X.
We cannot immediately apply the partial reverse
method to this model because the network acts contin-
uously. However, since reducing the influence of neu-
rons for which |u;| is very large was the essence of the
previous algorithm, it is expected that a similar effect
is achieved by using such a nonmonotone function as
shown in Figure 8b instead of the conventional sigmoid
function. We may assume that this nonmonotone out-
put function operates to keep the variance of |u;|, and
thus o2, from growing too large.

The function in Figure 8b is given by

1 —exp[—cu] ) 1+ kexp[c'(lul — A)]
1 +exp[—cu]l 1 +exp[c'(Jul —h)]

Su) = , (22)
where ¢’ and A are positive constants and « is a param-
eter which is usually negative (in the following exper-
iments, ¢ = 50, ¢’ = 15, h=0.5and x = —1). It should
be noted that the form of the output function and values
of the parameters are not very critical; the most essential
factor is the nonmonotonic property of f(u).

4.1. Numerical Experiments

Figure 9 shows the temporal changes in the overlap p
between X and S! for conventional dynamics (a) and
for nonmonotone dynamics (b), where the units of the
abscissa are the time constant 7. The experiment was
carried out with » = 1000 and m = 200 (r = 0.2).

M. Morita
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FIGURE 8. Output functions of the analog neuron model: (a)
conventional sigmoid function; (b) nonmonotone function.

As we see from this figure, the nonmonotone model
has marked merits:

1. The memory capacity is still larger than that for the
partial reverse method; the upper limit of r is about
0.327 for the above parameter values.

2. Evenif py < p.and recollection is unsuccessful, spu-
rious memories are not recalled; instead, the net-
work state continues to wander-—the variation in p
appears chaotic—without reaching any equilib-
rium?*. This does not necessarily mean that there
are no spurious memories, but implies that they are
extremely rare.

3. The overlap p becomes exactly 1 when py > p,, 1.€.,
the correct pattern is recalled without error. This
indicates that the absolute memory capacity (the
capacity where no recollection error is permitted)
is proportional to n although it was on the order
n/log n for the conventional autocorrelation model.
Furthermore, this model has another important

property, which is dealt with in the next section.

t It can be as high as about 0.4 if the output function is suitably
chosen (Yoshizawa, Morita, & Amari, in press). Also, the capacity
increases when we set w;; to some positive value.

+1f n is not large enough, one of the stored patterns or its reverse
pattern can be recalled but the probability of this decreases exponen-
tially as # increases.
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FIGURE 9. Time courses of the overlap p for (a) conventional and (b) nonmonotone dynamics (r = 0.2). Time (the abscissa) is

scaled by the time constant .

5. MEMORY FOR CORRELATED PATTERNS

In the preceding discussions, we assumed that all the
stored patterns are selected independently at random
so that they are not correlated with each other. This is
because as the correlation between the patterns become
large, the probability that

sgn(WS') = 5! (23)

decreases greatly, and thus the network does not have
an equilibrium in the neighborhood of S' as long as
conventional dynamics is used. But this assumption is
very unsatisfactory since it strongly restricts the rep-
resentation of memory: No matter how closely related
two things are, they must be represented by uncorre-
lated patterns.

In the preceding experiment, however, S' was an
equilibrium state although eqn (23) did not hold ex-

actly. This suggests that the above condition is not nec-
essarily essential to the network with nonmonotone
dynamics.

To examine this, we will deal with a special case
where stored patterns are distributed in clusters and
have a high correlation (Morita, Yoshizawa, & Nakano,
1990b). First we choose k patterns C', C%, ..., C*at
random, and generate k X [ patterns S'!, §'2, ..., S¥
independently so that
1 n
-2 sttt =a (24)

7=
is satisfied forevery u = 1, ..., kandv =1, ..., [,
where ¢ is a non-negative parameter representing the
correlation between C* and S*. We can obtain S$* by
selecting n(1 — a)/2 components of C* randomly and
reversing their sign.
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FIGURE 10. Time courses of the overlap p when clustered patterns (a = 0.6) are stored: (a) for conventional dynamics; (b) for

nonomonotone dynamics.

Then we store these patterns S*” using the autocor-
relation matrix given by eqn (2), where we put S! =
SH 82 =812 . 8" =8 If g is small, S* are
uncorrelated and distributed uniformly in state space;
otherwise, they are distributed in k clusters with C* at
the center of each cluster, and any pair of patterns in
the cluster has an overlap of about a>.

5.1. Numerical Experiments

Numerical experiments were carried out using n =
1000, k =50 and / = 4 (r = 0.2).

Figure 10 shows the temporal changes in the overlap
pwhen a = 0.6. This experiment was done in the same
manner as for uncorrelated patterns except that the
initial state X, necessarily had overlaps of about a?p,
with $* (v # 1).

As expected, the network with conventional dynam-
ics cannot recall the correct pattern at all (Figure 10a);
additionally, p decreases more rapidly than in Figure
9a when py is large.

On the other hand, the model with nonmonotone
dynamics works well (Figure 10b). Moreover, strangely
enough, the critical overlap is smaller than that for un-
correlated patterns. To be more precise, the critical
overlap p, of this model changes with the correlation ¢
as shown in Figure 11 (solid line): p, decreases with
an increase in a, provided that a is less than about
0.65; if a increases further, then p, grows very sharply
and finally exceeds 1, or the state S’ becomes unstable.

For comparative purposes, an experiment was car-
ried out on a pseudoinverse type of model (Kohonen,
1988), whose weight matrix is given by

W=2(ZTZ)" 127, (25)
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FIGURE 11. Changes in the critical overlaps of (a) the auto-
correlation model with nonmonotone dynamics and of the
pseudoinverse models with (b) conventional and (c)
nonmonotone dynamics, as a function of the correlation a.

where 2 = (S', ..., S™). The critical overlaps for con-
ventional (dotted line) and nonmonotone (broken line)
dynamics are plotted in Figure 11.

We see that p, does not depend on a in either case.
Furthermore, it is larger than that above when a < 0.7.
This means that although the pseudoinverse model can
memorize strongly correlated patterns, it cannot make
good use of the correlation, or, in a sense, the structure
of memory (note that the total amount of information
on the stored patterns decreases as a increases).

6. DISCUSSION

Then why does the autocorrelation model with non-
monotone dynamics show good performance for cor-
related patterns? A precise answer to this question can-
not be given because mathematical analysis is quite
difficult; I will give a rather intuitive explanation in-
stead.

Figure 12 shows a process of recollection when p,
~ p. and thus the network takes a long time to finish
recalling successfully. In this figure, p’ (dotted line) is
the overlap between the network state X and the center
C! of the cluster:

1 n
p == xqcl. (26)
n -

We see that p’ increases more rapidly than p at first
(note that py ~ ap,), and then decreases to 0.6 (=a).
Intuitively, this indicates the following. When X is far
enough from all of the stored patterns, each cluster
behaves like an attractor of a dynamical system; when
X approaches a cluster, it is attracted to just one pattern
in the cluster (Figure 13).

The point is how a single pattern is separated from
the others in the same cluster. To examine this, let us
introduce a quantity d,, defined by

_ Zi Py

d, = , 27
“ 2 Xy (27)
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FIGURE 12. A process of recollection of the nonmonotone dy-
namics model (a = 0.6). Time courses in p (thick line), p’ (dot-
ted line), dy, (solid line), dy,, dy3, and dy, (broken lines) are
plotted. The initial overiap p, = 0.23.

which is similar to the direction cosine between S*
and the output vector ¥ = (y, ..., y,)7. Although
d,, is similar to p (d;; = 1 when p = 1), they are not
equivalent because y; = f(u;) can be very different from
x; = sgn(u;) if f(u) is nonmonotonic.

Using these quantities, we can write the input vector
V= WY in the form

V= %(d”S“ +dnS? 4+ dySTy— Y, (28)

where a = X, x;v;. The terms d,,S'?, ..., duS* on
the right side of this equation correspond to noise. If

f(u) is the conventional sigmoid function, the noise

terms d,S" (v = 2, ..., ) necessarily grow when X
approaches S'!, since d |, is nearly equal to the overlap
between X and S".

However, when the nonmonotone output function
is used, they decrease to almost zero, as shown in Figure

Sll = Cl P
@

FIGURE 13. Schematic recalling process for the ciustered pat-
terns. At first, X approaches the center of the cluster, and then
goes to the individual pattern.
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12 (thin broken lines). The reason for this is explained
as follows. Assume that s!' = s (v # 1) applies to
many »’s; in other words, the i-th component is com-
mon to many patterns in the cluster. For such com-
ponents, |u;| is usually so large that y;s!' (thus,
yist, too) is very small or negative; as a result, the
outputs corresponding to the other elements become
dominant, and on average these have only slight cor-
relations with s} . Consequently, the inner products of
Y and S" become almost zero, i.e., the noise terms
vanish.

Incidentally, as was shown in Figure 11, this model
does not work well if a is too large. This is because X
is attracted to the center of the cluster so strongly that
it cannot reach the individual pattern, which also causes
a reduction in the memory capacity.

These problems, however, can be solved by learning
the connection weights using nonmonotone dynamics.
Concretely, we give patterns one by one and apply the
usual correlation learning rule, except that the output
function is nonmonotonic. Then the network can
memorize patterns not only with strong correlations
but also with more complex (e.g., hierarchical) struc-
ture, showing higher recollection ability than does the
pseudoinverse model.

7. CONCLUSION

Based on the examination of dynamics of autocorre-
lation associative memory, I have proposed two new
kinds of recollection dynamics. I have also shown that
by these dynamics, the conventional model is greatly
improved in terms of recollection ability and memory
capacity. Moreover, the analog model with nonmono-
tone dynamics does not recall a spurious memory and
exhibits higher recollection ability if the stored patterns
are properly correlated. The last property is particularly
important because it means that the restriction on
memory representation is eased: We can store sets of
patterns with some structure in the network without
transforming them or using a complex learning rule.
The four major problems of the autocorrelation
model, therefore, are overcome, or at least markedly
improved, by nonmonotone dynamics. These results
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are also important for studying the dynamical prop-
erties of associative neural networks.

However, there still remain some important prob-
lems such as mathematical analysis and biological rel-
evance; we should further study improved dynamics
for developing information processing by neural net-
works.
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