Pergamon

Neural Networks, Vol. 9, No. 8, pp. 1477-1489, 1996
Copyright © 1996 Elsevier Science Ltd. All rights reserved
Printed in Great Britain

0893-6080/96 $15.00+ .00

PII: S0893-6080(96)00021-4

1996 SPECIAL ISSUE

Memory and Learning of Sequential Patterns by Nonmonotone

Neural Networks

MASAHIKO MORITA
University of Tsukuba
(Received 23 July 1995; revised and accepted 31 January 1996)

Abstract—Conventional neural network models for temporal association generally do not work well in the absence of
synchronizing neurons. This is because their dynamical properties are fundamentally not suitable for storing
sequential patterns, no mattef” what storage or learning algorithm is used. The present article describes a
nonmonotone neural network (NNN) model in which sequential patterns are stored by being embedded in a
trajectory attractor of the dynamical system, and recalled stably and smoothly without synchronization; recall is
done in such a way that the network state successively moves along the trajectory. A simple and natural learning
algorithm for the NNN is also presented, where one only has to vary the input pattern gradually and modify the
synaptic weights according to a kind of covariance rule; then the network state follows slightly behind the input
pattern, and its trajectory grows to be an attractor with a small number of repetitions. Copyright © 1996 Elsevier
Science Ltd.

Keywords—Sequential pattern memory, Temporal association, Nonmonotone neural networks, Nonmonotone

dynamics, Trajectory attractors, Spatiotemporal pattern learning, Covariance rule.

1. INTRODUCTION

In associative memory of static patterns, the basic
behavior of a network hardly depends on whether the
network dynamics is discrete or continuous, synchro-
nous or asynchronous in updating the states of
neurons. In contrast, when sequential patterns are
stored, conventional networks of a fully recurrent
type do not work well unless discrete synchronous
dynamics (or an equivalent synchronizing mechan-
ism) is used. This implies that the network cannot
recall the pattern sequence in such a way that the
state of the network changes gradually from one
stored pattern to another, which is unnatural as a
model of memory; it also restricts application of
neural networks to temporal information processing.

These problems are thought to originate from a
fundamental dynamical property that virtually only
point-type attractors can be embedded in conven-
tional networks. That is, since strong attractors have
to be isolated from each other, the network state
must jump a distance to move from one attractor to

Requests for reprints should be sent to Masahiko Morita,
Institute of Information Sciences and Electronics, University of
Tsukuba, Tsukuba, Ibaraki 305, Japan; Tel: (+81-298) 53-5321;
Fax: (+81-298) 53-5206; e-mail: mor@is.tsukuba.ac.jp.

1477

another, or neurons must change their state
synchronously. This dynamical property is hardly
changed by improving the storage or learning
algorithm. It is therefore necessary to improve the
network dynamics, and one of the most effective ways
to do so is to use a nonmonotone neural network
(NNN).

The NNNs are recurrent networks consisting of
neurons whose input-output characteristics are
nonmonotonic. They are broadly divided into two
models, discrete and analog (continuous). The analog
NNN model, first suggested by Morita et al. (1990),
differs from the so-called analog Hopfield model
(Hopfield, 1984) only in that the output function
(also called activation, gain, or transfer function) of
neurons is nonmonotonic as shown in Figure 1. We
will deal with this model in the present article.

As previously reported (Morita, 1993), the NNN
exhibits good performance in terms of associative
memory, that is, memory capacity (the number of
patterns that can be stored) and retrieval ability (the
basin of attraction) are greatly enhanced. Moreover,
there is little, if any, spurious memory; when the
network fails in correct retrieval, it is driven into a
chaotic state of behavior.

These features have recently been studied theoreti-
cally by many researchers. For example, Yoshizawa et

1478

FIGURE 1. Nonmonotonic output function. The detailed shape of
the function is not very critical as long as it is nonmonotonic and
uf(u) <0 when u — +oo. The conventional function (sigmoid
function) corresponds to the case that x = 1.

al. (1993) analyzed an analog NNN model based on a
geometrical argument; they showed that the memory
capacity can be as large as about 0.4n (n is the number
of neurons), which is much larger than that of the
Hopfield model. Shiino and Fukai (1993) developed
the self-consistent signal-to-noise analysis and applied
it to NNN models with various output functions to
examine their memory capacity (see also Fukai et al.,
1995). The possible capacity for optimal synaptic
weights was studied by Boffetta et al. (1993) using the
replica symmetry breaking approximations (see also
Kobayashi, 1991). Nishimori and Opris (1993)
investigated the retrieval process based on the method
of statistical neurodynamics; a more rigid theory was
developed by Okada (1995). For the discrete model,
analysis was done by Yanai and Amari (1996).

However, the NNN has another important
property which is not treated in these studies. That
is, it can make good use of the memory structure (i.e.,
organized distribution of stored patterns) owing to a
fundamental change in its dynamical properties. This
will appear most clearly in the case of temporal
association, where sequential patterns are stored with
a string-shaped structure in the state space of the
network.

Indeed, the NNN can have attractors of the string
type, namely, trajectory attractors; thus it can
memorize sequential patterns in a natural way and
with a large capacity, and recall a sequence stably and
smoothly (Morita, 1994). We will examine these
properties and how they are realized.

2. CONVENTIONAL MODELS

Before describing the NNN, let us review basic
models of temporal association and why they require
synchronization.

2.1. Cross-correlation Matrix Memory

As a starting point of our discussion, we will consider
the simplest model (Amari, 1972) where the output of

M. Morita

neurons is £1 and all the neurons act synchronously.
Specifically, each neuron calculates its output at
discrete times 1 = 0, 1,2, ... according to

x(t+1)= sgn(i: Wijx]'(t)), (1

i=

where x; is the output of the ith neuron, w;; is the
synaptic weight from the jth neuron to the ith one,
and sgn(u) =1 for >0 and —1 for u <0. The
current state of the network is re}presented by a
column vector X = (x;(¢),...,x,(¢))" (superscript T
denotes the transpose). Using the weight matrix
W = [w;j], we may write eqn (1) as

X(t + 1) = sgn(WX(1)), @)

where the function sgn operates componentwise on
vectors.

Assume m pattern vectors S° 81 ... §m-1
(S* = (sf,...,s#)",s¥ =+1) to be orthogonal to
each other, or S¥TS” =0 for all p#v. Then a
sequence 8° —» S! — ... — 8§71 is stored in the
network by setting

m—2
W= > serignt, 3)
p=0

Since w;; is proportional to the correlation between
s*! and s}, this model is a kind of cross-correlation
matrix memory.

When S° or a similar pattern is given as an initial
state X(0),

m—2

S |-

X(l)=sgn((S”TX(0>)S"“)=S‘, “)

u=0

that is, S! is recalled at = 1. In the same way,
X(2) = 8%,X(3) = §3,..., or the stored sequence is
recalled.

Let us regard the network as a dynamical system
and consider its state space. The space consists of 2"
points representing the possible states of the network,
where the current state X moves from point to point.
Patterns S* are represented by m mutually distant
points.

Figure 2 shows the distribution of flow vectors in
the state space schematically. Flow at
S* (p=0,...,m—1), which is nearly parallel with
the vector V(S*)=WS* points to S**! since
WS# = §#+1 At a state which lies in between S*
and S**!, however, the flow points not to S#*! but
between S*t! and S¥+2,

If the network dynamics is given by eqn (2), the

Memory and Learning of Sequential Patterns

FIGURE 2. Dynamics of a conventional neural network of
temporal association. Flow vector field in the state space is
depicted. Sequential patterns S$° S',... that are mutually
orthogonal are stored using a cross-correlation matrix.

network state X jumps a long distance along the flow
at S* to reach the next pattern. On the other hand, if
the dynamics is not synchronous, X moves step by
step because only a few neurons can change their
state at a time. As a result, although X starts from S°
toward S!, it gradually varies its direction of
movement and departs from the sequence, and thus
recall fails.

It might be possible that X reaches S! without
synchronization if $° and S! are close enough and
few states lie in between; however, such a situation
does not satisfy the assumption that S* are mutually
orthogonal and thus only a very short sequence can
be stored.

Sompolinsky and Kanter (1986) and Kleinfeld
(1986) proposed a model that acts with continuous
time. In their model, however, “fast synapses” are
introduced to the above network, which work as a
synchronizing mechanism. That is, X is attracted by
S* by the function of fast synapses, then forced to
move near $**! within a short time by the function of
“slow synapses” with a large delay, attracted by $**!
again, and so on. Accordingly, recall is not very
smooth; besides, it does not work well when such an
initial state that lies midway between $* and S*+! is
given.

Baram (1994) proposed another type of model
using internal neurons. Although his model does not
explicitly employ synchronization, synapses with
different delays are also required; besides, it uses an
extremely large number of neurons increasing
exponentially with the dimensions of the input
pattern.

1479

2.2. Temporal Learning

As described above, synchronization is essential to
the cross-correlation type of temporal association
model. One might think that this is due to the
improper weight matrix and that synchronization will
not be necessary if the pattern sequence is stored
using a proper learning algorithm such as the
recurrent back-propagation (BP) algorithm (e.g.,
Pineda, 1987, Doya & Yoshizawa, 1989; Pearlmut-
ter, 1989). Actually, however, as long as the network
dynamics is time-continuous, learning is not achieved
unless the size of the network is small enough and
very limited patterns are learned.

The reason for this is that the BP learning only
attempts to minimize the difference (mean-square
errors) between the trajectory of the network state
and the given orbit. For stable recall of the target
sequence, it is necessary that the learned trajectory
becomes an attractor of the system, but this is not
guaranteed by the BP algorithm; in fact, it is hardly
possible for the following reason.

Let us first consider the case that a static pattern,
say §°, has been stored. Then in the state space, S° is
a point attractor around which flow is toward it. Such
a flow distribution is naturally achieved by directing
the vector ¥(8°) to 89, since generally ¥(S) ~ V(S°)
if §~ 8% If the energy function of the network is
defined, S° is located at a local minimum of the
energy. It should be noted that the energy function is
regarded as sharply pointed at its minimum (Figure
3) since the network state X is attracted more strongly
as it approaches S° (in this respect, the NNN is
different; see Section 4.2).

In contrast, if a spatiotemporal pattern gradually
changing from S° to another pattern S! has been
successfully stored, the corresponding trajectory in
the state space should be a string-type attractor with
gentle flow toward S!. Intuitively, the energy
function takes the form of a gutter whose bottom is
the trajectory (see Figure 12, later). Formation of
such a flow distribution, however, is very difficult,

Energy

State

FIGURE 3. Schematic energy landscape of conventional neural
networks. Two patterns S° and S$' are stored as attractors.
Generally the landscape is bumpy and has many {ccal minima
corresponding to spurious memories.

1480

since flow differs considerably between two adjacent
points on and off the trajectory, that is, vector
¥V = WX has to vary greatly depending on only a few
specific components of X. In order to realize such
flow everywhere along the trajectory, many hidden
neurons are required, the number of which is thought
to grow increasingly (possibly exponentially) with the
dimensions of the input pattern. This also causes an
explosive increase in learning time, computational
cost, and local minima of learning.

These problems do not depend on the learning
algorithm but are generic in the neural networks with
conventional dynamics, and thus are quite difficult to
solve without improving the network dynamics.

3. NONMONOTONE NEURAL NETWORKS

3.1. Network Dynamics
The dynamics of the analog NNN is expressed by

'rgzﬁ: —u; +Zw,jyj, (5)
Yi :f(ui); (6)

where u; denotes the instantaneous potential of the
ith neuron, y; the output, and 7 a time constant; f{u)
is the output function shown in Figure 1. In
mathematical terms,

1 —e % | 4 ge2(ld-h)
1 +eau) 1+ ecz(f“[_h) ’

Slu) = (7

where ¢), ¢p, and 4 are positive constants and « is a
parameter which is usually negative. Note that
formulae (5)«7) for this dynamics (nonmonotone
dynamics) are the same as those for conventional
monotone dynamics used in the analog Hopfield
model provided that x«=1. In the computer
simulations described later, ¢; = 50, ¢; = 10, A = 0.5
and k = —1 are used, but these parameter values are
not very critical; the most essential point is the
nonmonotonic property of the output function.

In this model, x; =sgn(y;) is assumed to be
observable, and the result of retrieval is given by
X= (xl,...,x,,)T. We will deal mainly with the
discrete state space and call X the network state as
before, though it does not uniquely specify the state
of the system.

3.2. Storage

Let 0"=(¢,....,¢))" (v=0,....m—1) be n-
dimensional patterns whose elements are +1. For
convenience, we deal with a cyclic sequence
-0 —

{015S'= e A

M. Morita

where m is large enough and the cyclic property is not
critical. We may choose Q¥ arbitrarily unless 9' and
0" for |y — vy| > 1 are very similar. It is desirable
that adjacent patterns Q" and Q“*! have a proper
overlap; otherwise, we need to interpolate some
patterns between them so that nonmonotone
dynamics can make full use of the memory structure.

Here we assume that 0 are randomly selected out
of 2" possible patterns and thus distributed uniformly
in the state space. In order to achieve smooth recall
using a simple synaptic weight matrix of the cross-
correlation type, we construct a sequence {S“}Im ! by
interpolating / — 1 patterns between Q" and Q"+1 for
each v =0,. — 1 (we put Q™ = Q%), as schema-
tically shown in Figure 4. Concretely, we let S% = Q¥
and obtain S¥*¢(¢ = .,1—1) by flipping the last
&/1 of the elements ¢¥ such that ¢¥ # ¢'+1.

Then we determine the synaptic weights by

Imll

1
— ’;z
p=0

SHST, (®)

where S’ = §°, and the term 1//is put after ¥ for the
case that the number / — 1 of interpolation patterns is
varied with v. We can store more than one sequence
in the same way.

3.3. Computer Simulation

To examine the behavior of the network during
recall, computer simulations were performed. A
sequence of m = 100 patterns was stored in a
network of n = 1000 neurons according to the above
procedure. Three patterns (/ = 4) were interpolated

FIGURE 4. Interpolation of patterns. The case of | = 4 is shown. A
sequence {S"} is obtained by interpolating three patterns in
each interval of the original sequence {Q"}.

Memory and Learning of Sequential Patterns

1481

1.0

0.0
1 1 1 !

4.0

FIGURE 5. Behavior of the network with conventional dynamics. Time course of the overlaps po, . ..

6.0 8.0 10.0 12.0

Time
, P16 is plotted. Time (the abscissa) is

scaled by the time constant +. The initial state is that X = S°. Thick lines represent p;,, namely, the overlaps with the original patterns Q".

between the original patterns. We define the overlap
pu between X and S* by

©)

where p, = | implies that X = §* and S* is recalled.

First of all, conventional dynamics (k =1) was
applied to this network. Figure 5 shows the result. In
this figure, the overlaps p,(x =0,...,16) are plotted
against time.

Since X = S is given as an initial state, the initial
values of pg, pi1, p2, and p; are 1, 0.75, 0.5, and 0.25,
respectively, and the others are about 0. We see that
the peak value of p, decreases with an increase of p

and that p; to p; converge at about 0.3. This means
that the network state X starts to move along the
stored sequence but gradually departs from it,
reaches an intermediate state among S! to S7, and
finally almost stops there.

On the other hand, the NNN could successfully
recall the sequence as shown in Figure 6, where the
initial state was so given that po = 0.3 and ps ~ 0.
Although py does not increase to more than 0.67, p;
and p, increase up to 0.85 and 0.95, respectively, and
pu for p >3 successively take their peak value of
about 1. In this process, p; (thick lines) increase
gradually from a small value to the peak while py,_)
decrease from about 1 to 0, which indicates that X
moves continuously from Q”! to Q”. The network

i 00 0 \
A

mmom

&3»"
L \\

6.0 8.0 10.0 12.0

Time

FIGURE 6. Behavior of the NNN. The weight matrix W is the same as that in Figure 5. The initial state was randomly selected out of the

states such that p, = 0.3.

1482

Do

0.4
Py

FIGURE 7. Retrieval process of the NNN. Trajectories of X(t)
(0 <t <1071) are plotted for various initial states. The ordinate
and the abscissa are the overlaps with Q%(= S§° and Q'(= §%),
respectively. Dots denote the initial states generated by adding
noise to S° so that p, = 0.1-0.9 (nine along the line p; = 0) and to
S¥(p = 1,2,3) so that p,, = 0.4 (the other three).

continued to recall the sequence and recalled S° at
t ~ 3007, that is, the sequence was recalled with a
period of about 3007.

Figure 7 shows the retrieval process in a different
way, where trajectories of X are projected onto a
pa—po plane. Patterns S%(= Q%) and S*(= Q') are
located at (e,1) and (1,e), respectively, where
e=0"0'/n~0, and S!, $2, and S? lie on the
straight line between the two points at regular
intervals.

We can see from this figure that X approaches the
pattern sequence and then moves toward Q' along
the line po + p4 = 1 + €. Together with Figure 6, this

M. Morita

indicates that near the orbit connecting Q° and Q!,
flow is gentle and nearly parallel to it, whereas at a
distance from the orbit, flow is rapid and nearly
perpendicular to it. We may therefore say that the
orbit along the sequence is a string-type attractor
with a large basin of attraction and that recall is
highly tolerant to noise (note that random noise
moves X almost always in the perpendicular direction
to the orbit in the state space).

Retrieval fails when the itial overlap is too small
and the initial state is outside the basin of attraction,
as is the case with associative memory of static
patterns. This model does not work also when too
long a sequence or too many sequences are stored.

Memory capacity of this model depends on many
parameters and is not clear. It seems, however, that
the capacity is mainly determined by the total amount
of information contained in the sequence, and that
the most characteristic parameter except x (the
capacity is null if k~1) is the number m of
independent patterns in the sequence. It should be
noted that even if / or the number of interpolation
patterns increases, the amount of information does
not increase very much. For reference, the maximum
value of m for which the sequence can be retrieved
was about 0.257 in the above experimental condition.

Figure 8 shows the behavior of the network when
the number of interpolation patterns is increased
(/= 8). We see that an almost correct sequence is
retrieved though the peak values of p, are slightly
smaller than those in Figure 6. We also see that the
increase and decrease in p, are more linear and less
steep (note that the time scale is different), which
means that X moves more smoothly and slowly with
increasing /. Accordingly, we can regulate the recall
speed to some extent by changing the method of

R OO
R A AL
03 %&%&&ﬁﬁﬁﬁ%%ﬂ&ﬂﬁ*ﬂﬁ‘*ﬁ&&g&%ﬁ&'

O
KRGO

wlllXY /
5 I MG
Sl 1 SOLONKE

R0

‘%
G

O
AL

X
(0
X
(X

o

i

R
%

9
A

5
%

’M“O%

A e s AAAR &S
o NSRRI

A
P ANA,

49994

O
IR
MRS
LENTIRe
e

I\
N

0

)

X

A ANl

T NS S

==X

15.0
Time

20.0 25.0

FIGURE 8. Time course of the overlaps for large /. Seven patterns (/ = 8) were interpolated between Q" and Q”**. The same initial state
as that in Figure 6 is given. The overlaps with Q"(v =0, ..., 4) are represented by thick lines.

Memory and Learning of Sequential Patterns

Py Py

1483

Py P

i
=

!

.‘

0

§
=
O

:
|
|

;
=

0 5.0 10.0 15.0

Time

20.0 25.0 30.0 35.0

FIGURE 9. Behavior when the weight matrix is given by eqn (10). The parameter a = 0.52. The initial state and the interpolation patterns

are the same as those in Figure 6.

interpolation. Regulation can be done more easily if
we vary the synaptic weights w;; of self-connections
(X moves fast when w;; are small and slowly when
they are large).

Incidentally, one might want to discriminate the
original patterns Q* from the interpolation patterns.
To do so, the weight matrix given by eqn (8) should
be replaced by some other matrix, for example, by

a Im—ll " - 1-a m—1 r
. — S [- - v '
W - E IS S+ 7 E oo, (10)

pu=0 =0

where a is a parameter (0.5 < a < 1). Then in recall,
X stays at Q¥ (; may vary but the signs do not
change) for a while and thus Q” can be discriminated,
although recall becomes less smooth as a decreases
and the period of stay increases. The simulation result
for I = 4 and a=0.52 is shown in Figure 9.

3.4. Dynamical Structure

It is often the case that the network state X does not
exactly pass through S* (i.e., p, # 1) but passes by it,
especially when m and / are large. Even in such a case,
X moves exactly on the line connecting Q° and Q! in
the p;—po graph. Together with the above results, this
fact implies that the model has such a dynamical
structure as shown in Figure 10 (we take the case of
1=4).

In this figure, the curved surface) represents a
subspace consisting of the states on the line segment
between S° and §* in Figure 7. If and only if X is on
this surface (i.e., X €), x; = ¢° = ¢! holds for all i
such that ¢? = ¢! is satisfied; thus Q has about 2%
states. Off the surface 2, flow is nearly perpendicular

to (X is strongly attracted by) . However, flow
becomes gentle as X approaches €2, and on {2, it is
nearly parallel with (X is not attracted very much by)
the orbit via S*.

We can assume a similar surface ({2-subspace)
between S* and S*Y which we denote by
Q(S*, S#h). Neighboring Q-subspaces overlap with
each other; for example, the states on the orbit
between S and S* are included in Q(S°,8%),
Q(S1,8%), Q(S?,8% and Q(S3,S7). The network
recalls the sequence stably because X is always
attracted by and included in a set of several Q-
subspaces (Figure 11).

Why does the NNN have such a dynamical
structure? To simplify the discussion, we suppose
without loss of generality that

o°=(,1,...,) and Q' =(1,...,1 —1,...,-1),

FIGURE 10. Dynamical structure of the model. Flow lines around
the orbit between Q° and Q' are depicted.

1484

FIGURE 11. Mechanism of stable recall. Neighboring Q-
subspaces mutually overlap near the orbit connecting S*. After
the network state X has reached the subspace, it moves along
the overlapping parts. The broken line represents a trajectory
for conventional dynamics.

where k=~n/2. Then s (0 <¢ <4) are 1 if
i<n—(n—k)t/4 and —1 otherwise. Also, x; = 1
applies to all i <k if and only if X € Q(§°,5%).

Assume that X is at a state given by adding
random noise to S? and thus X is outside Q(S?, $4)
and other Q-subspaces. Then the vector ¥V = WX
(used in conventional dynamics) is given by

1 -1

V={ ,‘Z:; (XTSH)§H!

1[~l
=72 PuS""!

pu=0

gf_;(suzs‘ +387+48° + 354 + 285+ 5%). (1)

Vector V' = WY (used in nonmonotone dynamics)
does not differ much from V provided that || < h
for almost all §; this condition is satisfied when p; is
small.

Since s = --- = s} = 1 for j <k, vjand v forj <k
take a large value, that is, x; tends to 1. In this way, X
is strongly attracted toward Q(S°, $*) by, as it were,
cooperation of patterns S$¢(0 <¢ <4) when X is
outside the 2-subspace. This applies, of course, to
conventional as well as nonmonotone dynamics.

The situation becomes different, however, as X
approaches (8% S*) and p, increases. In conven-
tional dynamics, the direction of ¥ does not change
much and thus X moves not along the sequence but
toward an intermediate state among S¢ as shown in
Figure 5 (see also Figure 11). On the other hand, in
nonmonotone dynamics, »; for all j <k tend to be
large so that y; = f(4;) become nearly equal to 0,
which reduces considerably the ratio of

M. Morita

YTS¢ (£=0,1,3,4) to YTS? together with the size
(norm) of the vector Y. As a result, ¥’ is decreased in
size and directed to $3, that is, a gentle flow from S2
to S3 is generated.

This explanation may be rather intuitive, but it is
confirmed by examining the behavior of each neuron
in the simulations.

4. LEARNING SPATIOTEMPORAL PATTERNS

Temporal association by the NNN has a great
advantage in that it does not require synchronization
of neurons or special synaptic delay in recall. In
storage, however, it is necessary to preserve previous
patterns somewhere if we use the algorithm described
in Section 3.2; besides, the algorithm is not applicable
(a more complicated weight matrix should be used) in
cases such that spatiotemporal patterns varying
successively (i.e., one bit changes at a time) are given.

In this section, we will introduce a learning
algorithm to the NNN to solve these problems.
Unlike conventional algorithms of the back-propaga-
tion type, this algorithm is quite simple, being based
on the covariance learning rule.

4.1. Algorithm

Network dynamics for learning is basically the same
as before but an external signal z; is input to each
neuron. Specifically, we replace eqn (5) by

du,- "
TE: —ui—l—;w,»jyj—f—z;. (12)

In parallel with this dynamics, covariance learning
is performed using z; as the learning signal. That is,
synaptic weights are modified according to

dWij _

T/ at = _Wjj -+ az,-yj, (13)

where a denotes a learning coefficient (o > 0) and 7
is a time constant of learning (7 > 7).

The external input vector Z = (zy,...,z,)" is
generally a function of the spatiotemporal pattern
S(t) to be stored, and determining this function is the
problem of encoding. Here we deal with the simplest
case

Z(1) = BS(1), (14)

where S = (sl,.,.,s,,)T, s; =1 and 3 is a positive
coefficient representing the input intensity of the
learning signal. In this case, the learning rule can be
written as

dWi'
I—d_t] = —wj; + afs;y;, (15)

Memory and Learning of Sequential Patterns

"

y
- T
SESSSSeN i
eSS o, et
s e
i 177
LT 77 TS 7777

FIGURE 12. lllustration of the learning process. Change in the imaginary energy landscape is depicted in (a)-{e). The current network
state X and input pattern S are represented by the dot and the arrow, respectively.

which is regarded as the covariance rule between the
input pattern .S and the output vector Y.

4.2. Learning Process

The process of learning is schematically shown in
Figure 12. In this figure, the “energy landscape” of
the network is depicted with a dot and an arrow
representing the current network state X and input
pattern S, respectively. Although actually the energy
function cannot be defined in the NNN, it is useful
for our intuitive understanding to suppose a land-
scape such that X goes down the hill.

First, assume that a static pattern S° has been
input, or §=.8° is maintained, for a while. Soon
X = § owing to the external input Z = (38§; in the
meantime, the energy around S° decreases through
learning and thus S becomes a point attractor of the
system (Figure 12a). It should be noted that unlike
Figure 3, the energy landscape is rounded at the
bottom. This is because as X approaches S°, |u] in
general increases and |y;| decreases, and thus the
vector ¥’/ = WY decreases in size.

Next, assume that § has varied slightly so that
S =S! Then X begins to approach S!, but the
movement is slow because of the energy barrier
(Figure 12b). In this process, the above learning
not only reduces the energy between S° and S,
but also generates the flow from S to S, since
V' gains a component in the direction of the vector
S—-X

Similarly, as S continuously moves, X follows

slightly behind § and a gutter is, as it were, engraved
in the energy landscape along the track of X (Figure
12¢, d). However, if .§ moves too fast and the input
intensity 3 is small, X cannot follow § and learning
fails. Hence, § should be varied slowly or input
intensively in the early stage of learning.

By learning the same pattern repeatedly, the gutter
becomes deep and clear, that is, the trajectory of X
becomes a strong attractor (Figure 12e). In the
second and subsequent cycles of learning, X can
follow § more easily because it moves in the gutter
already engraved to some extent. Accordingly, we
had better decrease [gradually and make the
movement of X less dependent on the external input
as learning proceeds.

After finishing several cycles of learning, the
network recalls the learned spatiotemporal pattern
without external input when a proper initial state is
given.

4.3. Computer Simulation and Discussion

Computer simulations on the above learning were
performed using a network of n = 1000 neurons. The
input pattern § starts from Q° at t = 0, moves at a
constant speed via the same points Q°,..., 0% as in
Section 3.3, and returns to Q° at ¢ = 5007; between
Q¥ and Q! s, for i such that ¢¥ # ¢**! are flipped
one by one. When S has returned to Q°, learning
proceeds to the next cycle.

The input intensity 8 was 0.3 in the first cycle,
decreased to 0.2 and 0.1 in the second and third

1486

M. Morita

15.0

FIGURE 13. Progress of learning. The overlaps between X and Q" (solid lines) and between S and Q" (broken lines) are shown. The
abscissa is time scaled by the time constant 7, and the origin is the point when the third cycle of learning started (1000~ after the start of

learning).

cycles, respectively, and was 0.05 thereafter. Para-
meters a = 2 and 7 = 50007 were used (the others
were the same as in Section 3.3).

The behavior of the model during the learning
process is shown in Figure 13, where the overlaps p,
are redefined by

n=13xg (16)

i=1

and are plotted with solid lines. Broken lines
represent overlaps between .§ and Q¥. This figure
shows that the network state X follows S at
approximately constant intervals. We see, however,
that p, does not reach 1, and that X passes not exactly
through but slightly off the orbit of S. This is thought

to be because X goes straight toward the current
input § although the orbit of S is curved.

At this stage, movement of X still partly depends
on the external input Z = 0.1, so that X ceases to
follow S if the external input is cut off; after about 4
cycles of learning, however, X is able to move roughly
along the orbit without the external input.

The performance of the network after 6 cycles
(30007) of learning was examined. Figure 14 shows
the retrieval process when an initial state with
po =03 is given and no external signal is input
(i.e., Z = 0). Similarly to those in Figures 6 and 8, the
peak values of p, increase to more than 0.9. Since Q”
are merely intermediate points of § and have no
special meaning, we may say that the target orbit of §
has been successfully stored even though there are
Some errors.

1.0

15.0

Time

FIGURE 14. Recall process after 6 cycles of learning. Time course of the overlaps p, (v = 0, .. . ,6) is plotted. The initial state is the same
as that in Figure 6.

Memory and Learning of Sequential Patterns
10 x@°
0.8 -

0.6

(=]

04 f
02F

0.0 |- %
AN N I N NN T N N T
0.0 0.2 0.4 0.6 0.8 1.0
by
FIGURE 15. Trajectories of X(f) (0 <t <207) on the py—~py plane.

Initial states denoted by dots have an overlap of 0.1 to 0.9 with
Q°. Retrieval is successful when the initial overlap p, >0.3.

Recall errors, namely the difference between X(¢)
and 8(7), exist in a temporal dimension as well asin a
spatial dimension. In the case of Figure 14, X moves
more slowly than § (it took about 6007 to finish a
round of the trajectory). The recall errors do not
decrease very much even if learning time is extended.
One way of greatly increasing the recall speed is to
increase the moving speed of S as the learning
proceeds; we can also achieve fast or slow recall of
part of the sequence by varying the speed of S in the
corresponding part of the orbit.

Next, let us examine the dynamical structure of the
network after learning. Figure 15 shows trajectories
of the network state X on the p;—po plane for various
initial states. We see that similarly to those in Figure
7, X approaches the line connecting Q° and Q' nearly

1487

perpendicularly, and moves exactly on the line
toward Q.

This indicates that the network has about the same
dynamical structure as that shown in Figure 10. That
is, the trajectory of X is included in attractive (-
subspaces which include the orbit of §; there exists
some gap between X and §, but its extent is restricted
by this structure.

Incidentally, to reduce the gap, or the recall errors,
we should shorten the interval between X and § in
learning. Probably the easiest way to do so is to make
the learning coefficient o not a constant but a
decreasing function of |u;|; then the synaptic weights
w;; of neurons such that x;#s; are modified
emphatically, since they generally have small |u].
This is approximately realized by putting

a =o'y, (17)

o' being a positive constant. This would be a natural
change because the amount of modification is
proportional to the output intensity of the ith
neuron, similar to the Hebb rule.

The result of applying this learning rule is shown
in Figure 16. Compared with Figure 14, the peak
values of p, are slightly larger, although only 4 cycles
of learning were performed. Moreover, the moving
speed of X is nearly equal to that of S'in learning. We
see, therefore, that the improved learning rule reduces
both spatial and temporal recall errors and learning
time.

5. CONCLUDING REMARKS

A NNN model that acts continuously and recalls the
stored sequence smoothly has been presented, and its

Time

FIGURE 16. Recall process when the improved learning rule was applied. The parameter o = 5 and the learning time was 20007 (4
cycles); the other conditions were the same as those in the previous simulation.

1488

dynamical structure has been discussed. I have also

presented a simple algorithm for learning spatiotem-

poral patterns.

Distinctive features of the NNN model are
enumerated in the following.

1. The composition of the network is simple: it is a
fully recurrent network without particular delay,
synchronization, or control mechanisms.

2. A pattern sequence is stored as a trajectory
attractor in the state space: this enables the
network to recall the sequence stably even in the
presence of substantial noise.

3. The memory capacity is rather large: sequences
containing at least 0.2n independent patterns can
be stored in the network of »n neurons.

4. Storage can be performed by a simple learning
algorithm: the algorithm is based on a covariance
rule and only requires a few repetitions of input.

5. The speed of recalling the sequence can be
regulated by varying the synaptic weights or the
transition speed of the learning signal.

This is a basic model showing principles of
sequential pattern memory; there remain many
subjects for future study. For example, mathematical
analysis on the dynamical structure and memory
capacity is required. Also, the model should be
extended for memory of more complex sequences
such that the same patterns appear repeatedly in
different parts of the sequences (one possible solution
to this problem is adding some extra components to
the input patterns so that the trajectories in the state
space do not intersect).

Finally, I will briefly mention the biological
relevance of the model. The NNN itself is not
biologically realistic, of course, since the real neuron
in the brain does not have such peculiar input-output
characteristics as in Figure 1. However, it is
significant as a model of the cerebral memory
mechanism for the following reasons.

First, the above features, which conventional
models do not have, are desirable also for the
brain; in particular, the learning algorithm is much
more natural than conventional ones and simple
enough for the brain to realize. Secondly, the
nonmonotonic input—output characteristics can be
virtually realized by a local neural circuit consisting
of a small number of neurons (in the simplest case, a
combination of one excitatory and one inhibitory
neuron). Lastly, the distribution of outputs of the
NNN is generally broad (i.e., the values of y; are
distributed broadly from —1 to 1), which agrees with
a physiological observation by Miyashita (1988) on
the sustained activities of neurons related to short-
term memory (Morita, 1992); note that the analog
Hopfield-type neural networks generally exhibit a
bipolar distribution of outputs.

For a detailed discussion on this subject and a

M. Morita

more realistic version of this model based on sparse
coding, see Morita (1996).

REFERENCES

Amari, S. (1972). Learning patterns and pattern sequences by self-
organizing nets of threshold elements. JEEE Transactions on
Computers, C-21, 1197-1206.

Baram, Y. (1994). Memorizing binary vector sequences by a
sparsely encoded network. IEEE Transactions on Neural
Networks, 5, 974-981.

Boffetta, G., Monasson, R., & Zecchina, R. (1993). Symmetry
breaking in nonmonotonic neural networks. Journal of Physics
A, 26, L507-L513.

Doya, K., & Yoshizawa, S. (1989) Adaptive neural oscillator using
continuous-time back-propagation learning. Neural Networks,
2, 375-385.

Fukai, T., Kim, J., & Shiino, M. (1995). Retrieval properties of
analog neural networks and the nonmonotonicity of transfer
functions. Neural Networks, 8, 391-404.

Hopfield, J. J. (1984). Neurons with graded response have
collective computational properties like those of two-state
neurons. Proceedings of the National Academy of Sciences of the
USA, 81, 3088-3092.

Kleinfeld, D. (1986). Sequential state generation by model neural
networks. Proceedings of the National Academy of Sciences of
the USA, 83, 9469-9473.

Kobayashi, K. (1991). On the capacity of a neuron with a non-
monotone output function. Network, 2, 237-243.

Miyashita, Y. (1988). Neuronal correlate of visual associative long-
term memory in the primate temporal cortex. Nature, 335, 817
820.

Morita, M. (1992). A neural network model of the dynamics of a
short-term memory system in the temporal cortex. Systems and
Computers in Japan, 23-4, 14-24.

Morita, M. (1993). Associative memory with nonmonotone
dynamics. Neural Networks, 6, 115-126.

Morita, M. (1994). Smooth recollection of a pattern sequence by
nonmonotone analog neural networks. Proceedings of the IEEE
International Conference on Neural Networks, Orlando, 2, 1032—
1037.

Morita, M. (1996). Computational study on the neural mechanism
of sequential pattern memory. Cognitive Brain Research, in
press.

Morita, M., Yoshizawa, S., & Nakano, K. (1990). Memory of
correlated patterns by associative neural networks with
improved dynamics. Proceedings of the International Neural
Network Conference, Paris, 2, 868-871.

Nishimori, H., & Opris, I. (1993). Retrieval process of an
associative memory with a general input-output function.
Neural Networks, 6, 1061-1067.

Okada, M. (1995). A hierarchy of macrodynamical equations for
associative memory. Neural Networks, 8, 833-838.

Pearlmutter, B. A. (1989). Learning state space trajectories in
recurrent neural networks. Neural Computation, 1, 263-269.

Pineda, F. J. (1987) Generalization of back-propagation to
recurrent neural networks. Physical Review Letters, 59, 2229—
2232.

Shiino, M., & Fukai, T. (1993). Self-consistent signal-to-noise
analysis of the statistical behavior of analog neural networks
and enhancement of the storage capacity. Physical Review E,
48, 867-897.

Sompolinsky, H., & Kanter, I. (1986). Temporal association in
asymmetric neural networks. Physical Review Letters, 57, 2861
2864.

Yanai, H., & Amari, S. (1996). Auto-associative memory with two-

Memory and Learning of Sequential Patterns 1489

stage dynamics of non-monotonic neurons. IEEE Transactions associative memory using a non-monotonic neuron model.
on Neural Networks, in press. Neural Networks, 6, 167-176.
Yoshizawa, S., Morita, M., & Amari, S. (1993). Capacity of

