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Abstract

The brain stores various kinds of temporal sequences as long-term memories, such as motor sequences, episodes, and melodies. The
present study aims at clarifying the general principle underlying such memories. For this purpose, the memory mechanism of sequential
patterns is examined from the viewpoint of computational theory and neural network modeling, and a neural network model of sequential
pattern memory based on a simple and reasonable principle is presented. Specifically, spatio-temporal patterns varying gradually with
time are stably stored in a network consisting of pairs of excitatory and inhibitory cells with recurrent connections; such a pair can
achieve non-monotonic input-output characteristics which are essential for smooth sequential recall. Storage is performed using a simple
learning algorithm which is based on the covariance rule and requires only that the sequence be input several times and retrieval is highly
tolerant to noise. It is thought that a similar principle is used in cerebral memory systems, and the relevance of this model to the brain is
discussed. Also, possible roles of hippocampus and basal ganglia in memorizing sequences are suggested.

Keywords: Sequential pattern memory; Neural network model; Network dynamics; Non-monotonic characteristic; Local inhibition cell; Sparse coding;

Learning algorithm; Covariance rule

1. Introduction

In the brain, it is thought that motor sequences are
represented by sequential patterns of neuronal activities;
some of these patterns are stored as long-term memories in
the cerebral cortex (possibly in the premotor cortex) and
retrieved when necessary. Also, memory of episodes
(meaning chains of events) and melodies is regarded as
sequential pattern memory. Although these various kinds
of memory are stored in different cortical areas by differ-
ent mechanisms, there must be a common principle under-
lying them because the basic structure and characteristics
of the cerebral neural networks do not differ much among
the areas.

This fundamental principle is not understood; in fact,
we even do not have a likely candidate for it. A number of
artificial neural network models of sequential pattern mem-
ory have been proposed, but they are based on principles
which are not reasonable for application to the brain.

The purpose of the present paper is illuminate the
structure, dynamics, coding and learning algorithm of the
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neural networks of sequential pattern memory from a
computational viewpoint. For this purpose, I will show a
neural network model based on a simple and reasonable
principle and discuss the relevance of the model to the
brain.

Before describing such a model, I will briefly explain
why conventional neural network models are unreasonable
and the origin of the problem.

2. Conventional models

Let us consider coding. For simplicity, we assume that
each neural element has two states, active and inactive.

The simplest type of coding is grandmother-cell coding,
where only a single element is active at a time. Since this
coding is very susceptible to noise, a variation as that
shown in Fig. la is often used. In this case, the active
period of an element is overlapped with that of others, but
the coding is still of a grandmother-cell type rather than a
population type because each element codes only a single
part of a particular sequence.

If sequential patterns are encoded in this way, they can
easily be stored by connecting the elements in order;
retrieval is also easy. This coding, however, is quite
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Fig. 1. Types of coding used in neural network models of sequential pattern memory: (a) grandmother-cell coding; (b) population coding; (c) population

coding with synchronization.

inefficient because it requires as many sets of elements as
there are stored sequences; in addition, it still has a low
tolerance to noise.

Another type of coding is population coding, that is, a
sequence is represented by a spatio-temporal pattern, where
various sets of elements are active at a time and an
element codes various parts of various sequences, as shown
in Fig. 1b. In contrast with grandmother-cell coding, popu-
lation coding is efficient and tolerant to noise. Actually,
however, coding as in Fig. 1b has not been used; a special
type of population coding where all the elements update
their state synchronously (Fig. 1c) has been used in con-
ventional models [1,3,11].

The reason is explained intuitively by Fig. 2, which
shows typical network dynamics of conventional models.
In this figure, the abscissa represents the state or the
activity pattern of the neural network, and the ordinate is
the energy representing stability of the network state. By
plotting the energy at each state, the ‘‘landscape of energy’’
of the system can be depicted.

An energy minimum corresponds to a stable state called
an attractor because the network changes its state in such a
way that the energy decreases; memory patterns are em-
bedded in strong attractors located at the bottom of deep
valleys. Generally, the energy landscape is acute at the
stored patterns and they are always separated from each

Energy

State

Fig. 2. Schematic energy landscape of conventional neural networks. Two
patterns S° and S! are stored as attractors. The network state cannot
move from S° to S! without jumping a distance because the energy
landscape has deep valleys at these states.

other because the attracting force becomes stronger as the
state of the network approaches them.

Accordingly, to retrieve stored patterns sequentially, the
network state has to jump a distance, that is, many ele-
ments must change their state simultaneously, since it
cannot move gradually from one attractor to another be-
cause of the energy barrier. That is why synchronization
among elements is necessary for conventional models.

However, such synchronous coding is unnatural be-
cause neighboring parts of a sequence are encoded in quite
different patterns, that is, an intermediate pattern between
them does not code an intermediate part of the sequence,
nor can the sequence be retrieved from such an intermedi-
ate pattern. In addition, a special mechanism for synchro-
nization is required.

It is thought, therefore, that coding such as that shown
in Fig. 1b is the most reasonable. Then, how can we store
so encoded patterns and realize recall without synchroniza-
tion?

One approach to this problem is to improve the learning
algorithm. Several algorithms for sequential pattern learn-
ing have been proposed [9,12] which are extensions of the
back-propagation algorithm. These algorithms, however,
are extremely complicated and, in reality, they do not work
very well without synchronization.

This implies that the fundamental cause of the problem
lies not in the learning algorithm but in the dynamics and
that it is necessary to improve network dynamics. Indeed,
the above problem is solved by modifying the network
dynamics as described in the next section.

3. Theoretical model

It has recently been found that most critical problems in
conventional memory models originate in a basic property
of their dynamics that the output of each element increases
with the total input to the element, and a neural network
model whose elements have non-monotonic input-output
characteristics was proposed [7]. This model, called a
non-monotone neural network, exhibits very high perfor-
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mance for memory of static patterns; for example, its
memory capacity is more than twice as large as that of
conventional models [13].

The above problem of sequential pattern memory is also
attributed to the conventional monotonic dynamics, and the
non-monotone model is valid for memory of sequences [8].
Though this model is more theoretical than realistic, I will
describe it to clarify the principle.

3.1. Structure and dynamics

The general structure of the model is shown in Fig. 3.
Sequential pattern S(¢) is input to a neural network N, and
stored there; this network has recurrent connections, and
its current state (activity pattern) is denoted by X. A
learning signal R from another network N, is also input to
the network N, in the learning mode, which specifies the
code, or the network state in which the current input
pattern should be stored.

We will deal with the simplest case where R = §, that
is, where the input pattern is stored as is without transfor-
mation and § itself is used as the learning signal. In this
case, N, is simply a relay point (the function of network
N, will be discussed in Section 5.2).

The most distinctive feature of this model is that the
elements of the memory network N, have non-monotonic
input-output characteristics, as shown in Fig. 4. Specifi-
cally, each element acts according to the equations

du;

n
T dtl = —u;+ Z wi; Ytz (1)

j=1

yi=f(u;), (2)
where u; denotes the instantaneous potential of the ith
element, y, the output, z, the external input, T a time
constant, and n the number of elements; f(u) is a non-
monotonic function shown in Fig. 4.

These formulas are the same as those often used in

0-+-000 |2

Fig. 3. Structure of the model. S is the input to the model, R is a learning
signal, and X is the state (activity pattern) of network N,.

Fig. 4. Input-output characteristics of the non-monotonic element. The
detailed form of the function f(u) is not very critical as long as it is
non-monotonic and « < 0. In conventional models, a monotonically
increasing function (k = 1) is used.

conventional models except that the output (or activation)
function f(u) is not a monotonically increasing function of
u but a non-monotonic function. This modification causes
a significant change in dynamical properties of the net-
work and enables the network to memorize sequential
patterns easily.

3.2. Coding

We assume that the input pattern S = (sl, s sn) at an
instant is a binary vector of which about half of the
components s; are 1 and the rest — 1, and that .S gradually
varies with time. That is, this model deals with non-sparse
population coding without synchronization.

We also assume that the result of retrieval is obtained
by the vector (sgn(u,), ..., sgn(u,)), where sgn(u) = 1 for
u>0 and —1 otherwise; we will treat this vector as the
network state X for convenience.

3.3. Learning algorithm

The learning algorithm is very simple. In parallel with
the above network dynamics, we have only to input pat-
terns successively and modify the synaptic weights accord-
ing to the covariance rule between the recurrent input
vector Y=(y;, ..., y,) and the learning signal vector

R=(r,, .., r,). Specifically, synaptic weights are modi-
fied according to
ldwi ;
- Wutany (3)

where a denotes a positive learning coefficient and 7' is a
time constant of learning (' > 7). The coefficient «
may be a constant, but the learning performance is im-
proved if « is a decreasing function of |u,}, which is
approximately realized by putting a=a'ly] (o’ is a
positive constant).

The external input vector Z = (21» s zn) is generally a
function of the input pattern S and the learning signal R.
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Since we are dealing with the case of R=S, we may
simply put

Z=AS, 4
where A is a positive coefficient representing the input

intensity of the learning signal. If R # S, then Z should be
given, for example, by

;= Zaiksk +Ary,
k

(5)

where a,, are synaptic weights from the kth input element;
a;, should also be modified according to

) da,

(6)

o = —a; T ar.s,

so that Z becomes proportional to R.

3.4. Learning process

The process of learning is schematically shown in Fig.
5. In this figure, change in the ‘‘energy landscape’” of the
memory network is depicted, where the n-dimensional
state space of the network is represented by the x-y
surface and the energy is represented by the z-axis; a solid
circle and an arrow represent the current network state X
and the current learning signal R (=), respectively.
Although actually the energy cannot be defined in non-
monotone neural networks, it would be useful for our
intuitive understanding to assume a landscape such that X
goes downhill.

First, assume that a static pattern has been input and R
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is kept constant for some time. Soon X =R due to the
external input Z = AR. In the meantime, the energy around
this point decreases through learning and thus it becomes a
point attractor of the system (Fig. 5a). Accordingly, the
static pattern is stored in the same way as in conventional
models.

It should be noted, however, that unlike Fig. 2, the
energy landscape is rounded at the bottom. This is the
effect of the non-monotonic characteristics, that is, as X
approaches the attractor, |u,| in general increases and |y,|
decreases, and thus the attractive force decreases.

Next, assume that the input pattern has varied so that R
has moved slightly. Then X begins to approach R, but the
movement is slow because of the slope of energy (Fig. 5b).
In this process, the above learning not only reduces the
energy between X and R, but also induces the flow from
X toward R.

Similarly, as the input pattern changes successively and
R moves continuously, X follows slightly behind R and a
gutter is engraved in the energy landscape along the track
of X (Fig. 5¢ and 5d). However, if R moves too fast and
the input intensity A is small, X cannot follow R and
learning fails. Hence, R should be varied slowly or input
intensively in the early stage of learning (however, when a
different sequence starts, R should jump so that the se-
quence may not be joined to the previous one).

By learning the same sequence repeatedly, the gutter
becomes deep and clear, that is, the trajectory of X
becomes a strong string-type attractor (Fig. 5e). In the
second and subsequent cycles of learning, X can follow R
more easily because it moves in the gutter already en-
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Fig. 5. Illustration of the learning process. Change in the imaginary energy landscape is depicted in a—e. Each point on the surface corresponds to a state or
an activity pattern of the network, and the depth represents energy or stability at the state. The current network state X and input pattern S are represented

by a solid circle and arrow, respectively.
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Time

Fig. 6. Recall of the sequence. The time course of the overlaps p,, between the network state X and the intermediate patterns S* after learning is plotted.

Time is scaled by the time constant 7.

graved to some extent. Accordingly, it is best to decrease
A gradually and make the movement of X less dependent
on the external input as learning proceeds.

After finishing several cycles of learning, the network
recalls the learned sequence without external input when a
proper initial state or a key pattern, usually the head of the
sequence, is given.

3.5. Computer simulation

Computer simulations on the above model were per-
formed using a network with »= 1000 elements. For
convenience, a cyclic sequence S® — S' — - §%
— S° was input to the network. Intermediate patterns S*
were selected at random, and the learning signal R was
varied gradually from S* to S#* 1. After finishing 4 cycles
of learning, the external input was cut off (i.e., Z = 0), and
various key patterns were given to the network.

Fig. 6 shows the time course of the overlaps p, be-
tween the network state X and the intermediate patterns
S# defined by

1 n
D= Z x;st (7)
i1
The initial network state was given such that p, = 0.3 and
p,=0foru=1.

We see that though p, does not increase much, p,
increases up to 0.94 and p,, for > 2 successively reach a
peak value of more than 0.95. This graph indicates that X
changes continuously from S* to S**!; in other words,
the learned sequence is smoothly recalled. It should be
noted that the moving rate of X, or the recall speed, is
almost the same as that of R in learning.

Fig. 7 shows the retrieval process in a different way,
where trajectories of the network state X for various initial
states are plotted on a plane. We can see from this graph
that even if the key pattern is rather different from S°, X
quickly approaches the line connecting S° and S' which
corresponds to the bottom of the energy gutter in Fig. 5
and then moves along it. This indicates that the learned
sequence is indeed stored as a string-type attractor and that
it can be retrieved even in the presence of substantial
noise.
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Fig. 7. Retrieval process. Trajectories of X(#) (0 < ¢ <20 7) for various

initial states (represented by dots) are projected onto the p,—p, plane.
Recall is successful when the initial overlap is p, > 0.3.
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4. Realistic model

The model in the previous section provides many signif-
icant merits, and its structure and learning algorithm are, in
principle, simple enough to be realized in the brain. Con-
cerning dynamics and coding, however, the model has
some problems when we regard it as a model of the brain.

Firstly, neurons do not have the unusual input-output
characteristics described in Fig. 4, but generally have
monotonic characteristics. Hence, the non-monotonic ele-
ment, which is essential for the above dynamics, is not
realistic.

Secondly, active and inactive states were symmetric and
thus active elements were about half of all the elements;
however, this is not the case with the brain. Though
detailed coding in the brain is not clear, it is certain that
the number of active neurons is much smaller than that of
inactive ones.

From physiological observations, it seems that most
cerebral memory systems use population coding with a
limited number of active neurons, called sparse coding.
Theoretical studies have shown that the memory capacity
of the network increases markedly if sparsely encoded
patterns are stored and the total activities (or the number of
active elements) of the network are kept constant [2];
however, it is not easy to make a realistic model with
sparse coding because fixing the total activities in a natural
manner is difficult.

To solve these problems and make the model more
realistic, I will present another neural network model. This
model was originally constructed by Morita [6] for explain-
ing the sustained activities of neurons in the infero-tem-
poral cortex [5]. These neurons are thought to relate to
memory of static patterns, but the model can also memo-
rize sequential patterns in the following way.

1 e e e Zi

Fig. 8. Structure of the memory network. A pair of excitatory and
inhibitory cells compose a unit corresponding to a single element in the
previous model.

0 >
-03 0.7

Fig. 9. Input-output characteristics of the unit. Without the inhibition cell,
the output x monotonically increases with the total input v (dotted line),
but x is a non-monotonic function of v (solid line) because of the output
y of the inhibition cell (broken line).

14

4.1. Structure and dynamics

The general structure of the model is the same as that in
Fig. 3, but the memory network N, is so modified that it
consists of excitatory and inhibitory cells as shown in Fig.
8.

A part surrounded by broken lines in this figure repre-
sents a unit, where the output cell C;" emits the output of
the unit and the inhibition cell C; sends a strong in-
hibitory signal to the output cell. Both cells receive recur-
rent signals from other units. In mathematical terms,

n
y,-=f(2w;xj—9)’ ®
j=
du, z
T—;f;:_ui—’— Zw;xj—wikyi-'—zi’ (9)
j=1

x=f(u;), (10)
where x; and y, are the outputs of C; and C;, respec-
tively, u; is the potential, z; is the external input, w,} and
w;; are synaptic weights from the jth unit to C! and C;,
respectively, w;" represents the efficiency of the inhibitory
synapse from C; to C;, and 6 is a positive constant.
The output function f(u) of each cell is a monotonic
sigmoid function increasing from 0 to 1. However, the
input-output characteristics of the unit are non-monotonic
as shown in Fig. 9. The output x increases with the total
input v when v is small enough and the output y of the
inhibition cell is small, but it decreases when v becomes
large. The unit corresponds to the non-monotonic element
of the previous model; however, the peak value of x is not
fixed but varies with the ratio of w;; to w;;.
4.2. Coding

In this model, the learning signal R should be a sparse
vector in which most components 7; are 0 and the rest are
1, and r; vary gradually with time so that sparse coding
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without synchronization can be realized. The rate of active has to be modified because more than one kind of synapse
components should be around 1-10%. exists.

Here we deal again with the simple case where the As a result of theoretical examination and computer
input pattern S itself can be used as the learning signal; simulations on various rules, the following formulas were
thus we assume that R =S and Z = AS. obtained:

,dw; .
4.3. Learning algorithm T T Ty +arx;, ‘ (11)

The learning algorithm of this model is similar to that o dw; = —w = By, + Byx,x, + 7y, (12)
of the previous model, except for the learning rule which dt Y ! Y

0 10 20 30 40 50 60 70 80 90 100
Time

0 10 20 30 40 50 60 70 80 90 100
Time

(b)

Fig. 10. Result of the computer simulation: (a) stored pattern; (b) retrieved pattern. A small part of each pattern is shown. Actually a cyclic spatio-temporal
pattern with a period of 500 7 and with 1000 components was the input.
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Fig. 11. Distribution of outputs x, (a) when stored patterns are retrieved and (b) when stored patterns are not retrieved.

where «, B, and B, are learning coefficients, and vy is a
positive constant representing lateral inhibition among
units. The coefficient @ may be a positive constant, but
the learning performance is better when « is a decreasing
function of x;; B, and B, are constants which satisfy
0< B, <B,.

If the i-th unit receives a learning signal (r, = 1) and its
output x; is small (x; < B,/B,), then w,; are reinforced
and w;; are depressed, thus the output x; increases. When
x; becomes large, however, w;; is reinforced, thus x; is
restrained from growing too much. If 7; = 0, then only w;;
is reinforced, thus x; decreases.

It should be noted that the term f3, x,x, or reinforcing
Wi according to the final output x; of the unit, is indis-
pensable for maintaining the non-monotonic character-
istics. Also, the term vy or lateral inhibition plays an
important role in keeping the total activity of units at a low
level (a small increase in the total activity causes a large
increase in the total inhibitory signals), allowing sparse
coding. In contrast, it is not very important that the
efficiency w,” of the inhibitory synapse be modified; it
may be a constant with a large value.

4.4. Computer simulation

Computer simulations were performed using a network
of 1000 units. The input pattern varies gradually from S°
through ', .., % and returns to S°, where S* are
random vectors such that 10% of the components are 1 and
the rest are 0; thus, on average, each unit codes 10
different parts of the sequence. A part of the input spatio-
temporal pattern (from S = S° to § = §'°) is shown in Fig.
10a.

The behavior of the model after 5 cycles of learning is
shown in Fig. 10b, where the time course of the outputs x;,
of units is plotted. A key was given by inputting S° with
noise (50 components are flipped from 1 to 0 and 50 from
0 to 1) for a short time (0 < ¢ < 0.57) and then the external
input was cut off. We see that the graph is similar to that
in Fig. 10a, which indicates that the input sequence was
successfully stored and retrieved.

Fig. 11a shows the distribution of outputs at an instant
during recall. Each output varies with time, but the form of
the histogram is almost constant while the network is
recalling the stored sequence correctly. In contrast, the
outputs are distributed as in Fig. 11b when a random
pattern is given initially and none of the stored patterns are
retrieved. The two distributions are obviously different,
though their averages are nearly equal.

These histograms are quite similar to those for infero-
temporal neurons observed by Miyashita [4], which can
hardly be explained by conventional models with mono-
tonic characteristics that generally exhibit a bipolar distri-
bution of outputs. Also, neurons which exhibit increasing
or decreasing activities during the delay period of a pair-
association task [10] can be explained by this model.

5. Discussion

5.1. Summary of the model

Before further discussing the biological relevance of
this model, I will summarize its distinctive features.
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First, the model is based on a principle which can
reasonably be applied to the brain as follows:

+ The model has the simple structure shown in Fig. 3. No
delay or synchronization mechanisms are required.

+ Non-monotone dynamics, which is essential for smooth
sequential recall, is realized by introducing local inhibi-
tion cells. It should be noted that the composition
described in Section 4.1 is the simplest solution for
achieving non-monotonic characteristics with mono-
tonic cells.

Sparse population coding without synchronization is

used. It enables the network to store a much larger

amount of information and gives higher tolerance to
noise than the grandmother-cell coding.

+ Storage is performed by a very simple learning algo-
rithm. It is based on a covariance rule and requires only
a few (about 3—6) repetitions of input.

Second, the model exhibits high memory performance
in many respects (see also [8]). It is worth noting that this
model can memorize various kinds of patterns (static
patterns, cyclic sequences, and sequences ending with
static patterns) in the same way.

Lastly, so far no other principle of sequential pattern
memory can be reasonably applied to the brain.

It is therefore probable that basically the same principle
as that described above is actually used in cerebral mem-
ory systems. Of course, this must be determined by physio-
logical experiment and observation. Nevertheless, assum-
ing that the model does describe the memory principle in
the brain, I will discuss the correspondence of the model to
the brain in the next section.

5.2. Relevance to the brain

As was shown in Fig. 3, this model consists of two
networks, N, and N,. Since input patterns are finally
stored in the network N, it is natural to assume that N,
corresponds to a cortical area for storing long-term memo-
ries, probably the premotor or supplementary motor area
for motor sequences and some area in the temporal associ-
ation cortex for episodic memories.

(a)

Fig. 12. Transformation of information representation: (a) represents the
pattern space of S and (b) represents that of X and R.

association
area II

association
area |

Fig. 13. A hypothetical function of the hippocampus. The association area
I and hippocampus correspond to the networks N, and N, in Fig. 3,
respectively. Information representation is transformed using a highly
plastic connection from hippocampal CA3 to CAl.

Then what cerebral area does the network N, corre-
spond to? Before answering this question, let us review the
function of N,.

The learning signal R is similar to the output X of the
network N; in particular, when a static pattern is stored,
they may be identical. However, for storage of spatio-tem-
poral patterns, R has to be different from X because the
difference enables sequential recall. Thus, the learning
signal should be generated outside the memory network.

We assumed in previous sections that the input pattern
can be used as the learning' signal. Generally, however, this
assumption is improper, since storage of sequences usually
involves transformation of information representation, as
schematically shown in Fig. 12.

In the space of the network state and the learning signal
(Fig. 12b), closeness between points, or similarity between
patterns, mainly represents closeness in temporal relation.
That is, very similar states of N, usually code neighboring
patterns in a sequence, as was actually observed in the
infero-temporal cortex [4].

By contrast, in the space of the input pattern (Fig. 12a),
more general features such as shape and motion are repre-

motor area

association
cortex

N

premotor
cortex

basal
_—l/ ganglia

Fig. 14. A hypothesis on the memory mechanism of motor sequences.
The premotor cortex and basal ganglia correspond to the networks N,
and N,, respectively.
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sented. That is, two similar patterns code, for example, two
figures of similar shape. Accordingly, quite different pat-
terns can appear successively and similar or identical
patterns can appear in different parts of sequences.

Such transformation of representation is a hard task,
and its specific mechanism remains for future study; how-
ever, it is certain that a large network is necessary for the
task.

That is why the model has the part of N, in addition to
the memory network. In the brain also, such a part that
transforms the input pattern into the learning signal must
exist. It should be noted that the learning signal and N, are
not required for retrieval when storage is completed.

Considering these factors, the most probable candidate
for N, is, in the case of episodic memories, the hippocam-
pus. The hippocampus provides many properties suitable
for generating the learning signal (see Fig. 13; further
discussion will be given at some other time).

In the case of motor sequences, it seems from anatomi-
cal structure that N, corresponds to the basal ganglia (see
Fig. 14), though the specific mechanism is not clear.

6. Concluding remarks

The memory mechanism for sequences has been dis-
cussed, and a neural network model consisting of pairs of
excitatory and inhibitory cells has been presented. This
model is insufficient in many respects, especially as to the
problem of how the learning signal is generated; however,
it is based on a reasonable principle which seems neces-
sary for sequential pattern memory and thus suggests many
things about the neural mechanism in the brain.

I emphasize that no model alone can elucidate the brain;

physiological and neuropsychological examination is es-
sential. T hope this study will promote combined theoreti-
cal and experimental studies to clarify the mechanism of
memory.
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