
Brain-like Computing Based on Distributed Representations and Neurodynamics 1

Brain-like Computing Based on Distributed

Representations and Neurodynamics

Ken YAMANE and Masahiko MORITA

University of Tsukuba

1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573 JAPAN

yamane@bcl.esys.tsukuba.ac.jp, mor@bcl.esys.tsukuba.ac.jp

Received 29 May 2009
Revised manuscript received 30 October 2009

Abstract A key to overcoming the limitations of classical artificial

intelligence and to deal well with enormous amounts of information might

be brain-like computing in which distributed representations of informa-

tion are processed by dynamical systems without using symbols. We

present a method for such computing. We constructed an inference sys-

tem using a nonmonotone neural network, which is a kind of recurrent

neural network with continuous-time dynamics. This system deduces a

conclusion according to state transitions of the network in which knowl-

edge is embedded as trajectory attractors. It has the powerful ability of

analogical reasoning without special treatment for exceptional knowledge.

We also propose a method of linking different neurodynamical systems

and show that two mutually interacting systems can process complex

spatiotemporal patterns.

Keywords Distributed Representations, Neurodynamics, Nonmono-

tone Neural Network, Selective Desensitization, Brain-like Information

Processing.

§1 Introduction
It has been noticed that classical artificial intelligence (AI) based on sym-

bolic manipulation has the symbol grounding problem1) and the frame problem2, 3).

2 Ken YAMANE and Masahiko MORITA

For those reasons, classical AI often does not work well in the real world, which

is filled with unlimited amounts of information. In contrast, although animals

such as dogs and cats do not seem to have languages or the ability to manipu-

late symbols, they evidently “think” or even “reason” and can deal better with

many real-world problems than AI systems can. In their brains, it is thought

that information is represented distributedly by activity patterns of neurons and

processed without being symbolized to be other patterns, of which processes can

be regarded as pattern dynamics4, 5, 6).

If information is not represented by symbols as in the animal brain,

then the symbol grounding problem does not arise. Distributed representations7)

facilitate analogy based on the similarity between representations, which seems

to enable animals to address the frame problem. Accordingly, it is expected that

such processing as is done in the animal brain will overcome some limitations of

classical AI. We designate this approach as “brain-like computing”, which aims

to complement classical AI approaches rather than to surpass or expel them.

Although many other “brain-like computing” systems have been devel-

oped, few systems can manipulate patterns to reason without using symbols or

equivalent representations. Regarding neural network models of inference, all

existing models either require local representations that correspond one-to-one

to things or concepts8, 9, 10, 11, 12) or are combined with symbol processing mod-

els to form hybrid systems13, 14, 15) because no scalable neural network has been

developed that is based on distributed representations and can simulate an ar-

bitrary finite automaton. For example, the Elman network16), in reality, cannot

learn well to simulate a given large-scale finite automaton.

We previously investigated this problem to find that it arises from an

averaging effect of synaptic weights caused by one-to-many correspondence be-

tween input and output patterns. We also found that although conventional

neural networks in general cannot escape from this averaging effect, it can be

avoided by introducing a novel method of contextual modification termed selec-

tive desensitization, and developed a neural network model that can simulate any

large-scale finite automaton without using symbols or local representations17, 18).

In this paper, we present a brain-like computing system that can make

inferences based solely on distributed representations using pattern dynamics in

a kind of neural network. We examine its possibilities using simulation experi-

ments. We also propose a novel method of linking different neural networks to

enhance the information-processing capability of neurodynamical systems.

Brain-like Computing Based on Distributed Representations and Neurodynamics 3

§2 Basic Principles

2.1 Nonmonotone Neural Network

First, we explain the nonmonotone neural network19), which is a fully

recurrent network of which elements have a nonmonotonic output function. Al-

though it will be modified later for use as an inference engine, the original model

is described by the following dynamics:

τ
dui
dt

= −ui +
n∑

j=1

wijyj + zi, (1)

yi = f(ui). (2)

Here, ui is the internal potential of the i-th element, yi is the output, wij is

the connection weight from the j-th element, zi is the external input, n is the

number of elements, τ is a time constant, and f(u) is the output function given

as

f(u) =
1− e−cu

1 + e−cu
·
1− ec

′(|u|−h)

1 + ec′(|u|−h)
, (3)

where c, c′, and h are positive constants.

The polarity of ui is important in this model. Therefore, we consider

xi ≡ sgn(ui)(sgn(u) = 1 for u > 0 and −1 for u ≤ 0) and refer to the vector

x = (x1, . . . , xn) as the current state of the network. The network state x at an

instant is represented as a point in state space consisting of 2n possible states. It

almost always moves to an adjacent point in the state space because xi changes

asynchronously when x changes. Consequently, a continuous trace of x is drawn

with the passage of time, which is called the trajectory of x .

2.2 Trajectory Attractors

An important feature of the nonmonotone neural network is that it can

make stable transitions along a given continuous trajectory in the state space;

such a trajectory is called a trajectory attractor19). By forming trajectory at-

tractors from states Sµ (µ = 1, . . . ,m) to Tµ, we can associate binary (±1)

patterns Sµ with the corresponding patterns Tµ: if Sµ is given as the initial

state, then the network makes state transitions autonomously and recalls Tµ.

We respectively refer to Sµ and Tµ as cue and target patterns.

To form the trajectory attractor, we train the network using a spa-

tiotemporal pattern r(t) changing continuously from Sµ to Tµ as a teacher

4 Ken YAMANE and Masahiko MORITA

Fig. 1 Schematic representation of the process of context-dependent recall.

signal. Specifically, we set x = Sµ and feed r to each element in the form of

zi = λri(t) (ri is a component of r and λ is the input intensity), and allow the

network act according to Eqs. (1)—(3). Simultaneously, we modify connection

weights wij according to

τ ′
dwij
dt

= −wij + αriyj , (4)

where τ ′ is the time constant of learning (τ ′ ≫ τ) and α is the learning coeffi-

cient. Although α can be a constant, we set α = α′xiyi in this study (α′ is a

positive constant) because the learning performance is improved if α decreases

concomitantly with increasing |ui|.

Intuitively, this learning decreases the energy of the network in the neigh-

borhood of r . Accordingly, when r changes successively from Sµ to Tµ, a con-

tinuous groove remains in the energy landscape. In addition, because r moves

slightly ahead of x , a gentle flow from Sµ to Tµ is generated at the bottom of

the groove. By repeating several cycles of learning for all µ, gradually decreasing

the input intensity λ of r , the network comes to make autonomous transitions

from Sµ to Tµ, or trajectory attractors are formed.

2.3 Context-dependent State Transition Using Selective

Desensitization Method

The original nonmonotone neural network always recalls a fixed target

from an identical cue. For the network to recall various targets according to the

Brain-like Computing Based on Distributed Representations and Neurodynamics 5

“context”, we modify the network dynamics using the selective desensitization

method 17, 18).

This method desensitizes about half of the elements or renders their

output as neutral, depending on a given pattern C, which represents the context.

Specifically, assuming that the neutral value or the average output is 0, we

substitute Eq. (2) for

yi = gif(ui). (5)

Here gi denotes a variable gain of the element, which usually takes 1 but takes

0 when the element is desensitized. We consider the simplest case, in which

C is an n-dimensional binary pattern whose components ci take ±1 with equal

probability; the gain is given as gi = (1 + ci)/2.

Through this operation, the modified state of the network is projected

onto a subspace comprising active (undesensitized) elements. It also produces

transitions according to the dynamics in the subspace. If trajectory attractors

are formed in the respective subspaces, then the network state reaches differ-

ent target patterns according to context patterns, as presented schematically in

Fig. 1.

§3 Inference Based on Distributed Processing
Although our approach aims for non-linguistic thinking resembling that

done by animals, describing how the model “thinks” and how it differs from

classical AI would be rather difficult if we apply the model straightway to non-

linguistic information processing. Instead, here we apply it to simple linguistic

reasoning that could presumably be done by some smart animals if we were able

to convey the meaning of words to them.

3.1 Method of Inference

Assume that a cue pattern S1 is given to the model in a context C1 and

that the network makes state transitions from S1 via S2 to T 1. If the pattern S1

represents Sparrow, S2 Bird and T 1 can fly, then we can regard this transition

as a reasoning process “Sparrow is a Bird, and therefore can fly” (Fig. 2). In this

case, C1 is regarded as representing the context in which <Flying Ability>

is asked. Under this interpretation, we ask a question “Can Sparrow fly?” by

giving the cue pattern S1 and the context pattern C1 to the model, and the

model makes an answer “Sparrow can fly.” Here, we emphasize that S1, S2, T 1,

and C1 are not symbols but patterns between which the distance or similarity

6 Ken YAMANE and Masahiko MORITA

Fig. 2 Method of inference.

can be defined naturally. Consequently, we can include the relation of similarity

between things or contexts in the representations.

We must give knowledge to the model to construct an actual inference

system. That knowledge is given by forming a trajectory attractor, for example,

from S1 (Sparrow) via S2 (Bird) to T 1 (can fly) in the state subspace specified

by context pattern C1 (Flying Ability), as presented in Fig. 2. If another tra-

jectory attractor from S3 (Horse) via S4 (Mammal) to T 2 (cannot fly) is formed

in the same subspace, then the system has gained another piece of knowledge

“Horse is a Mammal and therefore cannot fly.” Similarly, a trajectory attractor

from S1 (Sparrow) via S5 (Animal) to T 3 (move) in another subspace specified

as C2 (Mobility) corresponds to a piece of knowledge “Sparrow is an Animal,

and moves .”

After acquiring knowledge, the system can infer a conclusion deduc-

tively by state transitions along a learned trajectory. Moreover, because of the

distributed representation of knowledge and powerful generalization ability of

the model, it is expected that the system can infer plausible conclusions even if

novel questions are asked.

3.2 Encoding

The reasoning ability of the model described above depends largely on

encoding: how to represent information using distributed patterns. In the case of

the brain, not only concrete objects but also abstract concepts are represented as

patterns of neuronal activity. These patterns are considered to be structured, i.e.,

related things are represented by similar patterns. For example, it is suggested

that the categorical structure of visual objects is represented by the pattern of

Brain-like Computing Based on Distributed Representations and Neurodynamics 7

Fig. 3 Hierarchical structure of similarities among code patterns.

activity distributed over neurons in the monkey’s visual cortex and it is organized

hierarchically 20). However, detailed representations and encoding mechanisms

in the brain are unclear, so that we cannot apply them directly to this model.

In addition, developing a system in which suitable encoding is achieved by self-

organization is an interesting but difficult subject. We therefore must reserve

that issue for future study. Accordingly, we used a convenient method described

below, which would not be the best.

First, we generated context and target patterns randomly under the

condition that each component took the value +1 or −1 with equal probability.

Accordingly, similarities (direction cosines) between these patterns were nearly

zero, except that context patterns <Flying Ability> and <Wing> were set

to have a similarity of 0.5, and target patterns <can fly> and <have wings>

were set as identical so that we can investigate the case in which context patterns

are similar.

Second, we constructed cue patterns based on categories. Specifically,

the code pattern of an object was generated by adding a certain amount of

noise to (flipping a certain number of components of) a pattern representing

its category. Patterns representing categories were generated to form a tree

structure, as shown in Fig. 3, where the numerical values denote similarities

between patterns.

This structure was also used for training; that is, each piece of knowledge

was represented as generally as possible using a superordinate concept because

such generalized knowledge has widely various applications. It is noteworthy

8 Ken YAMANE and Masahiko MORITA

Table 1 Originally given knowledge.

Context Knowledge

Flying Ability Sparrow⇒Bird⇒can fly, Bat⇒can fly, Horse⇒Mammal⇒cannot fly,

Cherry⇒Plant⇒cannot fly, Airplane⇒can fly, Helicopter⇒can fly,

Automobile⇒cannot fly, Bike⇒cannot fly, Boat⇒cannot fly,

Cup⇒Tableware⇒cannot fly.

Breeding Swallow⇒Bird⇒egg, Dog⇒Mammal⇒young, Lily⇒Seed plant⇒seed.

Breathing Pigeon⇒Bird⇒lung, Bear⇒Mammal⇒lung.

Mobility Eagle⇒Animal⇒move, Dandelion⇒Plant⇒not move,

Bike⇒Vehicle⇒move, Fork⇒nonliving⇒not move.

Feeding Lion⇒Animal⇒feed, Azalea⇒Plant⇒not feed,

Spoon⇒nonliving⇒not feed.

Chloroplast Giraffe⇒Animal⇒not have, Morning glory⇒Plant⇒have,

Pot⇒nonliving⇒not have.

Table 2 Added knowledge.

Context Knowledge

Flying Ability Penguin⇒cannot fly, Tuna⇒Fish⇒cannot fly.

Wing Helicopter⇒not have.

Breeding Trout⇒Fish⇒egg, Grayfish⇒young.

Breathing Salmon⇒Fish⇒branchi.

Death Duck⇒living⇒will die, Cow⇒living⇒will die, Apple⇒living⇒will die,

Boat⇒nonliving⇒will not die, Knife⇒nonliving⇒will not die.

that some exceptions can exist (we can give “Sparrow is a Bird and therefore

can fly” to the system although some birds cannot fly), and that the superordi-

nate concept can differ in respective contexts (e.g., “Sparrow is an Animal and

therefore moves”).

3.3 Simulation Experiment

We simulated the model with n = 2000 elements and constructed the

system on a computer to examine the reasoning ability of the model. The pa-

rameters were c = 50, c′ = 10, h = 0.5, τ = 5000τ ′, and α′ = 2.

For actual operation of the system, some points were noted. First, it is

difficult for the system to learn exceptional knowledge because the corresponding

trajectory attractors are affected strongly by those corresponding to common

knowledge. They are therefore difficult to form. To cope with this problem, we

increased training sessions for each piece of exceptional knowledge by five times

so that all trajectory attractors were formed securely.

Second, conventional neural networks must generally relearn acquired

Brain-like Computing Based on Distributed Representations and Neurodynamics 9

knowledge when they learn new knowledge21). Such relearning is inefficient,

however, if the system requires relearning even for a small addition of knowledge.

We tested the system before and after additional learning of new knowledge to

investigate this point.

The kind of knowledge that was given originally to the system and that

which was added afterward are shown respectively in Tables 1 and 2. Initially,

we trained the network 10 times on average for each piece of the original knowl-

edge until the system acquired all. Then we asked the system various questions

about both learned and unlearned knowledge. Next, we trained the network for

the additional knowledge. The number of training iterations was 10 times on

average. Then we asked various questions again.

Table 3 shows results in abbreviated form. In this table, shaded regions

indicate the part related to additional learning (the question was newly asked

or the answer changed); bold face indicates the answer that was given directly

in training. We can say that the system gives a suitable answer to unlearned

questions if we consider the limited knowledge given to the system.

3.4 Discussion

The inferential system described above has the following brain-like fea-

tures that most existing systems do not have.

(a) Analogy based on similarity between cue patterns. A production

system model22), a typical inference engine of classical AI, basically cannot make

an inference unless all the knowledge necessary for leading to the conclusion

have been given as “if—then” rules. By contrast, the present system can reason

analogically using other knowledge. For example, the system answers “Eagle

can fly” to a novel question “Can Eagle fly?” because Eagle is represented using

a code pattern similar to <Sparrow>. Therefore, the network state is attracted

to the trajectory attractor <Sparrow → Bird → can fly>.

(b) Analogy based on similarity between context patterns. The system

can perform analogical reasoning when the context is different but similar to a

familiar context. For example, if the system knows that X can fly, then it is

generally inferred that X has wings, even though it learned nothing about wings.

This is because contexts <Flying Ability> and <Wing> are represented by

similar patterns and trajectory attractors formed in the former context produce

flows parallel to them in the subspace corresponding to the latter context.

10 Ken YAMANE and Masahiko MORITA

Table 3 Reasoning results.

Flying Wing Breeding Breathing Mobility Feeding Chloroplast Death

Sparrow fly have egg lung move feed not die

Eagle fly have egg lung move feed not die

Swallow fly have egg lung move feed not die

Duck fly have egg lung move feed not die

Penguin fly have egg lung move feed not

not not die

Pigeon fly have egg lung move feed not die

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Bat fly have young lung move feed not die

Horse not not young lung move feed not die

Dog not not young lung move feed not die

Cow not not young lung move feed not die

Bear not not young lung move feed not die

Lion not not young lung move feed not die

Giraffe not not young lung move feed not die

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Tuna not not egg branchi move feed not die

Trout not not egg branchi move feed not die

Grayfish not not young branchi move feed not die

Salmon not not egg branchi move feed not die

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Cherry not not seed not not have die

Dandelion not not seed not not have die

Lily not not seed not not have die

Apple not not seed not not have die

Azalea not not seed not not have die

Morning glory not not seed not not have die

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Airplane fly have move not not not

Helicopter fly have move not not

not not

Car not not move not not not

Bike not not move not not not

Boat not not move not not not

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Cup not not not not not not

Fork not not not not not not

Knife not not not not not not

Spoon not not not not not not

Pot not not not not not not

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Brain-like Computing Based on Distributed Representations and Neurodynamics 11

This feature is unique compared with other neural network models such

as mixture of local experts models, in which each local network or “expert” is

specialized to a particular context and generalization across different contexts

does not occur.

(c) Nonmonotonic reasoning. In general, inference systems with high abil-

ity of analogical reasoning suffer from exceptional knowledge. In stark contrast,

systems that deal excellently with exceptional knowledge require numerous de-

tailed rules and have difficulty using analogy. Although various methods have

been proposed23, 24, 25, 26) to cope with this dilemma, it seems impossible to solve

it using classical AI approaches only because this problem is deeply related to

the frame problem. However, the present system is not troubled by exceptional

knowledge that causes a logical inconsistency because logical inferences are not

used in this system.

For example, although Bat is aMammal and is therefore represented by a

similar code pattern to <Horse>, <Dog>, etc., the system replies “Bat can fly”

to the question “Can Bat fly?” because exceptional knowledge has been given.

Nevertheless, it performs analogical reasoning to other questions about Bat sim-

ilarly as it does to questions about Horse and Dog (e.g. “Bat bears young”). In

other words, the trajectory attractor <Bat → can fly> in the context <Flying

Ability> does not much affect the flow from <Bat> toward <Mammal> in

other contexts because the influence of trajectory attractors toward <Mammal>

in various contexts, such as <Horse → Mammal> in <Flying Ability> and

<Dog → Mammal> in <Breed>, is stronger.

For the same reason, the influence of exceptional knowledge in the same

context is limited and does not impair the ability of analogical reasoning as long

as the knowledge is exceptional. For example, when a novel cue pattern with

equal similarities to <Bat> and to <Dog> is given in the context <Flying

Ability>, the network state moves to <cannot fly> through the neighborhood

of <Mammal>. Such an inference can be regarded as common-sense reasoning

of a kind.

(d) Analogical reasoning using a structure of similarities among code

patterns. A crucial advantage of distributed representations over symbolic

representations is that the relation among objects, like that shown in Fig. 3, can

be expressed implicitly by similarities or distances between code patterns. The

present system can make good use of this advantage for inference.

12 Ken YAMANE and Masahiko MORITA

Fig. 4 Process of reasoning using a structure of code patterns.

For example, although the system has learned nothing about Fish in

the context <Mobility> and has not learned explicitly that they belong to

Animal in any context, it drew the conclusion that “Tuna moves.” The process

of inference is shown in Fig. 4(a), in which the time course of similarities between

the network state x and individual code patterns is shown (the abscissa is scaled

by the time constant τ). As this graph shows, the network state moves initially

from <Tuna> toward <Fish> and <Animal> as a result of the influence of

various trajectory attractors to them. Then it is attracted to the trajectory

attractor <Animal→move>, which was formed when the system learned “Eagle

is an Animal; consequently, moves .”

Similarly, the system infers “Tuna will die”, as depicted in Fig. 4(b),

where the network state is carried by a flow along <Tuna → Fish → Animal>.

It is then attracted to a trajectory attractor formed when the system learned

“Duck, Cow and Apple are living. Consequently, will die.”

(e) Addition of knowledge. Conventional multilayer neural networks con-

front the serious problem that previously acquired knowledge is disrupted sud-

denly in the process of learning a new set of knowledge, which is called catas-

trophic interference21). The present system is, however, robust to additional

learning of new knowledge.

Brain-like Computing Based on Distributed Representations and Neurodynamics 13

Fig. 5 Interference to learned knowledge by additional learning.

In the experiment described above, for example, addition of knowledge

about Fish caused no error in inference as to acquired knowledge because<Fish>

is distant from other code patterns. Similarly, additional learning in a novel

context <Death> has little influence on acquired knowledge.

However, if completely conflicting knowledge such as “Horse can fly” is

added, some previous knowledge (“Horse cannot fly”) is lost. Furthermore, the

addition of exceptional knowledge can interfere with related general knowledge.

In particular, addition of much exceptional knowledge of the same kind can

change some general knowledge. Some examples are that if very many flightless

birds are newly learned, the system will infer “it cannot fly” for an unknown bird.

Nevertheless, the interference is actually limited in most cases. For example, even

after the system additionally learned “Helicopter has no wings,” it can infer by

analogy that “Eagle has wings” and “Car has no wings.”

To examine the interference effects more specifically, we gradually in-

creased the amount of additional knowledge in the experiment described above

while maintaining the ratio of exceptional knowledge around 20%. Figure 5

shows the result in which the percentage of correct inferences as to original

knowledge is shown against the ratio of added knowledge to the original. That

figure shows that the rate does not decrease rapidly; it remains higher than 80%,

even when a double amount of knowledge is added. This result indicates that

the system can accumulate knowledge merely through occasional relearning.

§4 Interaction Between Neurodynamical Systems

The objects and concepts involved in the inference system presented

above are represented by static patterns and can be symbolized, but we believe

14 Ken YAMANE and Masahiko MORITA

Fig. 6 Structure of a model of interaction using dynamic modification.

that a critical advantage of brain-like computing will be revealed when we deal

with objects that are difficult to represent as symbols such as motions of the

body.

However, the system described above is insufficient for dealing with such

objects because they should often be represented by spatiotemporal patterns and

because a single neurodynamical system cannot process complex spatiotemporal

patterns. Considering that the actual brain comprises many areas with spe-

cific functions working together, we describe in this section a method of linking

multiple neurodynamical systems to construct a modular system.

4.1 Dynamic Modification

The basic idea of our method is to modify a neurodynamical system

using the state of another system as the context. However, we cannot apply

the previous selective desensitization directly because the context pattern has

been assumed static so that each trajectory attractor can be formed in a certain

subspace.

Nevertheless, if the pattern of desensitized elements varies rather slowly,

then it is thought that short trajectory attractors formed in a series of subspaces

substantially comprise a long trajectory attractor. Accordingly, to induce inter-

actions between neurodynamical systems, we need only transform the state of a

Brain-like Computing Based on Distributed Representations and Neurodynamics 15

Fig. 7 Two-joint robot arm.

dynamical system into a pattern that does not change sharply. We refer to such

a pattern as the modification pattern instead of the context pattern.

Figure 6 portrays a simple model of mutual interaction, where two non-

monotone neural networks of the same size are mutually linked through a two-

layer network consisting of normal binary neurons. Each layered network trans-

forms the output pattern of one neurodynamical system (nonmonotone neural

network) into the modification pattern for the other system. In the following

experiment, however, it has the sole function of retrieving the state vector (con-

sisting of binary components) from the output pattern with many zero compo-

nents (corresponding to desensitized elements) because we performed encoding

so that the state vector would not change sharply.

4.2 Computer Simulation

As a simple example of application, we trained this model to learn

the movement of a computer-simulated two-joint robot arm without actuators

(Fig. 7). Specifically, each neurodynamical system with 2000 elements repre-

sents the normalized state (θi, ωi) of one arm joint (−1 ≤ θi, ωi ≤ 1, i = 1, 2).

It learned 10 trajectories for the corresponding joint, undergoing selective de-

sensitization by the modification pattern that depends on the state of the other

system. The initial states of the learned trajectories of the arm are listed in

Table 4.

After 10 cycles of training, we gave various initial states to the model.

Figure 8 presents an example of the behavior of the model, where the actual

trajectory of the arm and the trajectory recalled by the model are displayed,

16 Ken YAMANE and Masahiko MORITA

Table 4 Initial states of the robot arm given to the model.

θ1 ω1 θ2 ω2 θ1 ω1 θ2 ω2

1 −0.20 0.69 −0.21 −0.33 6 0.00 0.00 0.00 0.90

2 −0.15 0.70 0.28 0.55 7 0.00 0.00 0.50 −0.90

3 0.00 0.00 −0.50 −0.90 8 0.00 0.00 0.50 0.90

4 0.00 0.00 −0.50 0.90 9 0.47 −0.68 0.41 0.95

5 0.00 0.00 0.00 −0.90 10 1.00 0.61 −0.13 −0.62

respectively, in the upper and lower panels. Furthermore, Fig. 9 shows an exam-

ple in which the initial state is different only for θ2. The figure shows that the

arm trajectory is well reproduced by the model in both cases, and that it is well

produced for all learned trajectories. Results show that each neurodynamical

system makes state transitions depending on the state of the other system, so

that the model can learn and recall complex spatiotemporal patterns.

Although this robot arm task is very simple and although the advantages

of the model would be insufficiently demonstrated, we think that the model is

important for additional development of brain-like computing because, by link-

ing through modification patterns, many neurodynamical systems can mutually

interact while preserving modularity (effective connections can be switched on

and off easily). They might learn the dynamics of a more complex system from

a few sample trajectories. Exploring this possibility remains as a subject for

future study.

§5 Conclusion
We have presented a neurodynamical system that forms inferences ac-

cording to context-dependent state transitions. We also demonstrated its many

advantages over existing inference systems, such as a powerful capability of ana-

logical reasoning and simple treatment of exceptions. We have also proposed a

method of linking multiple neurodynamical systems and showed that two dy-

namical mutually interacting systems can reproduce complex movements of a

two-joint robot arm.

Although these models do not directly model the brain, they are similar

to the brain in that information is not represented by symbols or local represen-

tations but is represented distributedly by patterns. Furthermore, their basic

principles, namely trajectory attractors and selective desensitization, are sug-

Brain-like Computing Based on Distributed Representations and Neurodynamics 17

Fig. 8 State transitions from the initial state (θ1, ω1, θ2, ω2) = (0.0, 0.0,−0.5, 0.9).

Fig. 9 State transitions from the initial state (θ1, ω1, θ2, ω2) = (0.0, 0.0, 0.0, 0.9).

18 Ken YAMANE and Masahiko MORITA

gested to be used in the brain 5, 6, 27). This fact, together with the results of this

study, suggests the great potential of such brain-like computing.

However, the present models leave much room for improvement and

many problems remain. For example, the mode of encoding objects to patterns

has not been examined, particularly for abstract concepts of which information

is not detected by sensors. Comparison with humans or animals will also be

necessary for evaluation and further improvement of the models. Nevertheless,

we believe that future study of our brain-like computing models will bring a

major breakthrough in intelligent information processing that is required not

only to address real-world problems but also to address important problems in

the era of information explosion.

Acknowledgment This work was partly supported by a Grant-in-Aid

for Scientific Research on Priority Areas (18049008, 19024010, and 21013007)

from the Ministry of Education, Culture, Sports, Science and Technology of

Japan.

References

1) Harnad, S., “The symbol grounding problem,” Physica D, 42, pp. 335—346,
1990.

2) McCarty, J. and Hayes, P. J., “Some philosophical problems from the stand-
point of artificial intelligence,” Machine Intelligence, 4, pp. 463—502, 1969.

3) Sandewall, E., “An approach to the frame problem and its implementation,”
Machine Intelligence, 7, pp. 195—204, 1972.

4) Morita, M. and Suemitsu, A., “Computational modeling of pair-association
memory in inferior temporal cortex,” Cogn. Brain Res., 13, pp. 169—178, 2002.

5) Suemitsu, A., Morokami, S., Murata, K. and Morita, M., “Computational
examination on the dynamics of recall activity in the inferior temporal cortex,”
in Proc. of the 2002 IJCNN, pp. 136-141, 2002.

6) Suemitsu, A. and Morita, M., “A neural network model of context-dependent
neuronal activity in the inferotemporal cortex,” in Proc. of the 2006 IJCNN,
pp. 685—690, 2006.

7) Rumelhart, D. E., McClelland, J. L. and the PDP Research Group, Parallel
distributed processing: Explorations in the microstructure of cognition volume
1: Foundations, MIT Press, Cambridge, 1986.

8) Blelloch, G. E., “CIS: A massively concurrent rule-based system,” in Proc. of
the AAAI-86, pp. 735—741, 1986.

9) D’Avila Garcez, Artur S., Lamb, Luis C. and Gabbay, Dov M., Neural-symbolic
cognitive reasoning, Springer-Verlag, Berlin, 2009.

Brain-like Computing Based on Distributed Representations and Neurodynamics 19

10) Touretzky, D. S. and Hinton, G. E., “Symbols among the neurons: details of
a connectionist inference architecture,” in Proc. of the IJCAI-85, pp. 238—243,
1985.

11) Touretzky, D. S. and Hinton G. E., “A distributed connectionist production
system,” Cogn. Sci., 12, pp. 423—466, 1988.

12) Samad, T., “Towards connectionist rule-based systems,” in Proc. of the IEEE
ICNN-88, 2, pp.525—532, 1988.

13) Barnden, J. A. and Pollack, J. B., Advances in connectionist and neural com-
putation theory, 1, High level connectionist models, Ablex, Norwood, 1991.

14) Holyoak, K. J. and Barnden J. A., Advances in connectionist and neural com-
putation theory, 2, Analogical connections, Ablex, Norwood, 1994.

15) Gallant, S. I., Neural network learning and expert systems, MIT Press, Cam-
bridge, 1993.

16) Elman, J. L., “Finding structure in time,” Cogn. Sci., 14, pp. 179—211, 1990.

17) Morita, M., Murata, K. and Morokami, S., “Context-dependent sequential
recall by a trajectory attractor network with selective desensitization,” in Proc.
of the 3rd ICNNAI, pp. 235—238, 2003.

18) Morita, M., Matsuzawa, K. and Morokami, S., “A Model of context-dependent
association using selective desensitization of nonmonotonic neural elements,”
Systems and Computers in Japan, 6, pp. 73—83, 2005.

19) Morita, M., “Memory and learning of sequential patterns by nonmonotone
neural networks,” Neural Netw., 9, pp. 1477—1489, 1996.

20) Kiani, R., Esteky, H., Mirpour, K. and Tanaka, K., “Object category structure
in response patterns of neural population in monkey inferior temporal cortex,”
J. Neurophysiol., 97, pp. 4296—4309, 2007.

21) McCloskey, M. and Cohen, N., “Catastrophic interference in connectionist
networks: The sequential learning problem,” The Psychology of Learning and
Motivation, 24, pp. 109—164, 1989.

22) Klar, D., Langley, P. and Neches, R., Production system models of learning and
development, MIT Press, Cambridge, 1987.

23) McDermott, D. and Doyle, J., “Non-monotonic logic I,” Artif. Intell., 13, pp.
41—72, 1980.

24) McCarthy, J., “Circumscription; A form of non-monotonic reasoning,” Artif.
Intell., 13, pp. 27—39, 1980.

25) Reiter, R., “A logic for default reasoning,” Artif. Intell., 13, pp. 81—132, 1980.

26) Hanks, S. and McDermott, D., “Default reasoning, non-monotonic logic, and
the frame problem,” in Proc. of the AAAI-86, pp. 328—333, 1986.

27) Suemitsu, A., Miyazawa, Y. and Morita, M., “A model of the activity of the
hippocampal neurons based on the theory of selective desensitization,” Neural
Information Processing (Part I), Lecture Notes in Computer Science, 5506, pp.
383—390, 2009.

