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Abstract—Associative memory using a sigmoid neuron model with the autocorrelation matrix has the advantage
of the simplicity of its structure of the memory but has the disadvantage of the memory capacity. Its absolute capacity
is asymptotically n/(2 log n), where n is the number of neurons. By computer simulation, Morita has recently
shown that the performance of the associative memory is improved remarkably by replacing the usual sigmoid
neuron with a nonmonotonic one, without sacrificing the simplicity. We use a piecewise linear model of the non-
monotonic neuron and investigate the existence and stability of equilibrium states of the recalling process. We derive
two kinds of theoretical estimates of the absolute capacity. One estimate gives the upper bound of the absolute
capacity 0.5n, and the other gives the average value of the absolute capacity 0.4n. These values fit well with computer

simulations.
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1. INTRODUCTION

The neural network model of the autocorrelation as-
sociative memory or the content addressable memory
has a long history of research (see, for example, Amari,
1972; Anderson, 1972; Kohonen, 1972; Nakano,
1972). Hopfield (1982) introduced the concept of the
energy function being analogous with the spin-glass,
and showed by computer simulation that the memory
capacity of the associative memory is approximately
0.15n, where # is the number of neurons. Namely, the
autocorrelation associative memory can recall ran-
domly generated patterns up to 0.15# with a small error.
Since then a number of researchers studied the prop-
erties of the associative memory theoretically.

It has been proven that the absolute capacity is
asymptotically n/(2 log n) (McEliece, Posner, Rodem-
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ich, & Venkatesh, 1987; Weisbuch, 1985), where the
absolute capacity is the maximum number of randomly
generated patterns which are memorized as the equi-
libria of the network with the correlation-type connec-
tion weights. On the other hand, Amit, Gutfreund, &
Sompolinsky (1985a, 1985b) showed by using the rep-
lica method that the memory capacity is about 0.14#n
if a small percent of errors is admitted in the recalling
process. This is called the relative capacity. Amari and
Maginu (1988) studied the dynamical aspects of the
recalling process by using the statistical neurodynam-
ical method, where the relative capacity of 0.16# is ob-
tained by a simple approximation method.

There are two flaws in the conventional associative
memory model. The first one is that its absolute ca-
pacity of n/(2 log n) is smaller than # in order and its
relative capacity of 0.15# is not large. The second one
is the existence of a large number of spurious memories
(Gardner, 1986).

There are a number of modifications of the proto-
type. They are, for example, the generalized-inverse
memory matrix (Amari, 1977; Kohonen & Ruohonen,
1973), the optimal capacity by a general memory ma-
trix (Gardner, 1988), the sparsely encoded associative
memory (Amari, 1989; Meunier, Yanai, & Amari,
1991; Palm, 1980; Willshaw, Buneman, & Longuet-
Higgins, 1969), introduction of sparsity in connections
(Yanai, Sawada, & Yoshizawa, 1991), introduction of
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excitatory and inhibitory neurons (Shinomoto, 1987),
the chaos association memory (Aihara, Takabe, &
Toyoda, 1990) and so on. However, these are not com-
pletely free from the above flaws.

Recently, Morita has shown that the performance
of the conventional associative memory model is im-
proved remarkably by replacing the usual sigmoid or
hard-limiter neuron with a nonmonotonic neuron
(Morita, Yoshizawa, & Nakano, 1990a, 1990b; see also
Kobayashi, 1991, for a possible capacity of a single
nonmonotonic neuron). A nonmonotonic neuron Is
an analog device whose output is a nonmonotonic
function of its internal potential whose dynamics is
governed by a first order differential equation. One re-
markable fact is that the absolute capacity is about 0.47,
which is much greater than the absolute capacity n/(2
log n) of the conventional model and is larger than even
the relative capacity 0.15n. The other point is the dis-
appearance of the spurious memory. When the network
fails to recall a correct memorized pattern, the state
shows a chaotic behavior instead of falling into a spu-
rious memory.

The purpose of this paper is a theoretical analysis
of the potentiality of the autocorrelation associative
memory. We study conditions which guarantee that
randomly generated patterns to be memorized are
equilibria of the network. We also show their dynamical
stability. Through these studies we prove that the ab-
solute capacity is about .47 and is upper bounded by
0.5#n, which is compatible with computer simulation.
We adopt a piecewise linear model of the nonmonotonic
neuron and also touch upon a theoretical explanation
why spurious memories disappear.

2. AUTOCORRELATION ASSOCIATIVE
MEMORY

In this section we give a short summary of the auto-
correlation associative memory model and describe
Morita’s improvement on the recalling process.
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This model consists of #» neurons. Memorized pat-
terns are n-dimensional random vectors whose ele-
ments take the values +1 randomly with equal prob-
ability and they are denoted by s® = (s{*s$. . 5T
(0 =1,2,..., m). The memory matrix W is con-
structed as follows,

m

> sis (i #))

1

W, = —
iy n ~
u=

w; =0,

or in the matrix form,
1 T
W:;SS —ak,, (1)

where

S=[sWs@ | stm], (2)

E,, is the n-dimensional unit matrix, S7 is the transpose
of S, and a is the memory ratio defined by

a=—. (3)
n
We can assume that the covariance matrix S7.S is non-
singular. And also without loss of generality we can
assume

s =(1...)7, (4)

and analyze the recalling dynamics of s(*.
The recalling dynamics is given by

Bt i), (5)
where u = (u,1,. . .u,)7 is an n-dimensional vector
which represents the internal potential of neurons and
fis the scalar output function of the neuron that op-
erates on each element of the vector u. Conventional
associative memories use a sigmoid output function,
however, the Morita model uses a nonmonotonic func-
tion as shown in Figure 1 (Morita et al., 1990a, 1990b).

FIGURE 1. Non-monotonic output function.
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The recalling process of the associative memory is
as follows. For a given input pattern u, we evaluate eqn
(5) with initial condition u, and if the solution converges
to an equilibrium state u,, the recalled pattern is de-
termined, not by f(u,), but by the signum of u,:

1.0
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sgn(u,). If the solution does not converge, we cannot
determine a recalled pattern and we deem that the re-
calling failed.

Comparisons of the recalling properties of the con-
ventional and the nonmonotonic neurons are shown
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Figure 2. Time sequences of recalling process (n = 1000, a = 0.32). Abscissa and ordinate are the time and the direction cosine
between the signum of u(t) and s". Accordingly, the larger the direction cosine is, the closer to s (" the recalied pattern is. The
direction cosines for the conventional neuron (a) converge to values far less than 1 even if their initial values are set close to 1.
This fact means that the memorized pattern s (" is unstable. For a nonmonotonic neuron (b), there is a basin of attraction around
s, for this special example, the critical direction cosine is about 0.44.
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in Figures 2 and 3. The values of the parameters of the
output function (Figure 1) used in these simulations
are # = 0.5, k = —1, and the number of neurons n =
1000. Figure 2 shows time evolution of the recalling
process with a memory ratio of 0.32, where abscissa
and ordinate are the time and the direction cosine be-
tween the signum of u(7) and s'?. Figure 2(a) shows
that the direction cosines for the conventional neuron
converge to values far less than 1 even if their initial
values are set close to 1. This fact means that the mem-
orized pattern s'") is unstable. For a nonmonotonic
neuron (Figure 2(b)), it can be seen that there is a
basin of attraction around s'!?, for this special example,
the critical direction cosine is about 0.44. Figure 3 is
a summary of the relation between the memory ratio
and the critical direction cosine, from which it can be
seen that the nonmonotonic model (curve B) is superior
to the sigmoid model (curve A). For the benefit of
comparison, a result for the sigmoid neuron with the
generalized-inverse memory matrix is also shown by
curve C. It should be noted that the recalling is perfect
in the cases of the nonmonotonic model (B) and the
generalized-inverse memory matrix (C), while recalled
patterns include a small percent of errors in the con-
ventional model (A).

A remarkable feature of Figure 2(b) is that the evo-
lution of # does not converge to an equilibrium state
when memorized pattern s'!’ cannot be recalled. This
suggests that spurious memories are rare for the non-
monotonic neuron model.

3. EQUILIBRIUM STATE OF PIECEWISE
LINEAR MODEL

For ease of theoretical investigation, we approximate
the nonmonotonic function shown in Figure 1 by the
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FIGURE 3. The relation between the memory ratio and the crit-
ical direction cosine. It can be seen that the nonmonotonic
model (curve B) is superior to the sigmoid model (curve A).
For the benefit of comparison, a result for the sigmoid neuron
with the generalized-inverse matrix is aiso shown by curve C.
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x(u)

FIGURE 4. Piecewise linear approximation {o nonmonotonic
output function.

piecewise linear function shown in Figure 4. By doing
so we can obtain the absolute capacity or the maximum
memory ratio within which there exists a stable equi-
librium of eqn (5) in the same quadrant as the mem-
orized pattern.
The recalling dynamics for the associative memory
using the piecewise linear neuron is
%’; =—u+ Wx(u),
(6)
x{u) = sgn(u) — ku,

where sgn 1s the signum function defined by
1 u=0,
sgn(u) = (7)
-1 u<q,
which operates on each element of the argument vector.
Until Section 6 we assume that

k= (8)

ISR

We have the following theorem:.

THEOREM 1. Let u be an equilibrium state of eqn (6)
in the quadrant of the memorized pattern s'V and let x
= —ku + sgn(u). Then the x is characterized by the
Jollowing three conditions,

(@) 2 xs =0 (=2,3,...,m),

i=1

(Mix@”zix:m 9)

i=1 =1

(cyx; <1 (i=1,2,...,n).

Proof. The equilibrium state of eqn (6) is determined
by

—u+ Wx(u)=0. (10)
In the quadrant of s’ it holds that sgn(#) = s(*). By

substituting this relation, the second equation of eqn
(6) and eqn (1) into eqn (10), we obtain



Capacity of Associative Memory

1 1 1 .
Se L N
% s ( % a)x . SS'x.
By eqn (8), the above equation is reduced to the fol-
lowing.
1 1

zs“’:;SSTx. (11)

Equation (11) is rewritten as

T
Slfla“)—la(z),,,~ia(’”) =,
k n n n
where
a® =3 xs* (u=1,2,....m).

i=1

Taking into account that the covariance matrix S7.S is
nonsingular, we have (a) and (b) of eqn (9). The con-
dition (¢) is equivalent with the condition that x is in
the quadrant of 5. ®

The problem described in eqn (9) can be interpreted
as follows. Firstly, vectors which satisfy condition (a)
are contained in the orthocomplement of the subspace
spanned by s (u = 2, 3, ..., m). Call this space Q.
On the other hand, the vectors which satisfy conditions
(b) and (c) form an n-polygon which is the intersection
of the (n — 1)-dimensional hyperplane defined by con-
dition (b) and the semi-infinite region determined by
X, <1(i=1,2,...,n). This region is illustrated in
Figure 5 where it is the hatched area labeled B. Let R
be an n-simplex whose vertices are those of B and the
origin. The existence of an x which satisfies eqn (9) is
equivalent to existence of an intersection of R and Q.

Since the s (u = 1, 2, ..., m) are assumed to be
random vectors, we can determine the probability of
existence of an x which satisfies eqn (9). The capacity
of the associative memory is given by the minimum

Ay

FIGURE 5. Geometrical representation of an equilibrium state.
The hatched area illustrates the region of x which is determined
by 21, x,sf" =m, and x; < 1.
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0 .

FIGURE 6. Caricature of the n-simplex R.

value of a for which the probability of existence of the
x becomes 0 as number # of neurons increases to oo .

If it is possible to approximate the simplex R by a
cone with its vertex at the origin, then we can calculate
the probability of the existence of the x from the fol-
lowing theorem. (Our calculation depends upon the
assumption that s are distributed in every direction
uniformly, though in the original formulation there are
only a finite number of possible directions.)

THEOREM 2. Let us fix an (n — m + 1)-dimensional
subspace Q in n-dimensional Euclidian space. If an n-
dimensional cone R with vertex at the origin and vertex
angle 20 is selected in a random direction, then the
probability P of nonintersection of Q and R (other than
at the origin) is given by

ff sin”""@ cos™ 2 6df

P= ) 12
f;'/z sin”# cos™ 2040 (12)

where
— 0. (13)

Proof. See Appendix A.

4. ESTIMATES OF THE VERTEX ANGLE
OF THE n-SIMPLEX R

In this section, we introduce two estimates of the vertex
angle of the n-simplex R.

4.1. Estimate by the Angle Between an Edge and its
Facing Plane

The first estimate depends upon angle 4;0Z (denoted
{s), where 4, is any vertex of the n-polygon B, Z is any
point on the facing plane of 4; and O is the origin (see
Figure 6). In order to show more clearly the structure
of the simplex, Figure 5 is redrawn as Figure 6 in which
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base polygon B is represented as a tetrahedron. Coor-
dinates of these points can be written as follows:

(A :pp=(m—-n+1,1,1,..., DT
A=, m-n+1,1,..., D)7, (14)
(A ipa=(1,..., L, Lm—n+1)7,
([ Z=(z1,22, ..., 2)7,

zy = 1,

" _ (15)
Zi:z}\jpijs (i=2,...,n),
J=2

N=0, S A=1

\ J=2

With these notations we have the following theorem.

THEOREM 3.

lim ¢, =~ (16)

> 2

Proof. See Appendix B.

On the other hand, the coordinate of a point on the
plane 4,4,. . .4, ; that contains 4, can be written

n—1

n—1
my= > Np; =0, 2 N=1
: o

J=1
Therefore, we have

A

CoS { > ————— |
\/ =N

and { takes any value between 0 and = /2.

From the above theorem we see that the angle of
simplex R at the origin O is w/2 for any direction. So
it is reasonable to adopt this value as 26 in eqn (13).

It will be worth mentioning the following facts. For
the circumscribed cone of R, it holds that

§__a 1
3 (1—10V2(1+70(ﬂ>>’

and so { — 7 as n —> oo. On the other hand, for the
inscribed cone it holds that
o)
cos==1+0—=],
2 Va
and {— 0 as n = oo. Hence, both cones do not provide
us with any information about the limiting value of a.

4.2. Estimate by a Cone Which has Same Solid
Angle as Simplex R

In the above subsection we observed that when 7 is
large, the vertex angle of the inscribed cone is zero but
the angle between an edge and its facing plane is w/2.

S. Yoshizawa, M. Morita, and S.-1. Amari

From this we can image a shape of the simplex such
that edges of the simplex thrust out sharply. In order
to get a more averaged criterion than the angle between
an edge and its facing plane, we adopt a cone with a
solid angle equal to that of the simplex.

Using Amari’s method, we can calculate solid angle
spanned by the simplex R (Amari, 1990).

THEOREM 4. Let v, be the value of v at which the func-

" tion

2

v
Y(v, o) =7

—log{l — &(v)} (17)

takes its minimum, where ®(v) is the error integral
defined by

P(v) = f V%exp[f %—2} du.

Then, when the number n of neurons is sufficiently large,
the solid angle K,, spanned by the simplex R at the origin
is given by the following equation,

2

K, = C(vo, U)Snexp{‘n[zvoz — log{1 — ®(vo) } ” » (18)

o

where

1
o = . OSCIS‘z‘, (19)

N

Sy, is the surface area of the n-dimensional unit sphere
and C(v, o) is defined by

[

Vo2 + (a2 + 1)o?
Proof. See Appendix C.

C(v, o) =

COROLLARY 5. If 20, is the vertex angle of a cone
whose solid angle is equal to that given in Theorem 4,
then

2
sin 0, = expl—[z—vfg = log{l — ®(vy)} “ ,  (20)

where vy is the same as in Theorem 4.
Proof. See Appendix D.

In order to see explicitly the relation between the
memory ratio ¢ and vertex angle 6., we have to solve
eqgn (20) numerically. However, the following two values
are easily obtained,

™
=0 662__’
a - 5

1
== >0 .=
a 2—»

5. ESTIMATES OF THE
MEMORY CAPACITY

In this section we calculate the capacity of the associa-
tive memory based upon the above obtained vertex an-
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gles. Let us remark that the integrand of eqn (12),
sin”"™f cos™ 20,

is positive and takes its maximum value at

9(a)=arctan\/1;a. 1)

Also, the denominator of eqn (12) can be split into
two terms as

7/2

c]
f sin"™"™ cos™ 20df + f sin"""f cos™ 20d9.
0

Q
Using the saddle point approximation we can rewrite
eqn (12) as follows,

{0 &a) < 0,
pP=

22
1 Oa)>4. (22)

In the case of the vertex angle of the n-simplex,
Theorem 3 gives the following 0,

P=——f=— - — =

T
e

NI

T
2

SR

Hence, we have
f(a)>0 for O0<a<!

and the memory capacity is estimated as 0.5.

On the other hand, in the case of the solid angle of
the n-simplex, we have to solve eqn (20) numerically
to get a function ® = ©(a), which is compared with
f(a) as in Figure 7.

These results are summarized in the following cor-
ollary.

COROLLARY 6. In the case of k = a™', an upper bound
of the memory capacity is given by 0.5n and the average
value is estimated at 0.398n.

In numerical calculations of eqn (6) for n = 300,
we could get a correct recalling result for ¢ = 0.5 by
selecting proper initial values. But for n = 1000, the
upper limit of a for correct recalling was between 0.4
and 0.41.

O/r

0.4 b(a)

O(a)

6-0
0.1 0.2

0.3 om\o\.s .

FIGURE 7. Capacity estimated by a cone with the same solid
angle. The value of a at which § — @ is equal to 0 gives the
memory capcity.
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6. THE CASE k # a!

In order to investigate the case where k # a !, we will

consider the equilibrium solution for k nearly equal to
a”'. Using x we will rewrite eqn (6) as follows:
dx ko~ k

da K

x~§SSTx+S", (23)

where ky = 1/a and x, denotes the equilibrium solution
given by eqn (11), that is, x, satisfies
1 1
— 5! == 557x,. (24)
k() n
Then we have the following result concerning the
solutions in the neighborhood of x;.

THEOREM 7. Assume that there exists the equilibrium
solution x = x, defined in Theorem 1 with respect to
the estimation by a cone. Then there exists an equilib-
rium solution for eqn (23) in the neighborhood of x, if
k is sufficiently close to k.

Proof. See Appendix E.

By this theorem and Corollary 6, we can conclude
that the memory capacity is close to 0.398n if k is close
to ko. For the analysis for k far from k, it seems nec-
essary to know the statistical properties of (S7.S)~,
which are very complicated.

7. STABILITY OF EQUILIBRIUM
SOLUTIONS

In our piecewise linear model, stability of equilibrium
solutions are easily determined if their locations are
known. Namely, the variational equation at equilibrium
solution x = x; is given by

A k—k ko,
di PRI

where z = x — xy.
In the coordinate system described in the Appendix
E, this reduces to the following:

— STS 0
ok K575 0

ke nl 0o 0

(25)

Taking into consideration that S7.S is positive definite,

we have the following results:

1. x, is stable when k < kg,

2. xy is neutrally stable when k = k,

3. xp is unstable when k > k;. (This implies that di-
rections of nonmemorized vectors are unstable.)

8. CONCLUDING REMARK

In this paper we investigated the recalling process of
an autocorrelation associative memory whose neuron
element has a nonmonotonic output function and de-
rived its absolute capacity theoretically. It is worth
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mentioning that the theoretical result shows good
agreement with the numerical experiments. Also, we
consider it a new result that the absolute capacity is of
order n (nearly equal to 0.4n), which contrasts with
the relative capacity of order 0.15#n obtained by nu-
merical simulations for the sigmoid output neuron and
that obtained by the replica theory for the signum out-
put neuron, and the theoretical absolute capacity of
order n/(2 log n) for the signum output neuron.

As for the spurious memory, it is possible to show
the following properties theoretically. When k£ = 1/a,
there is no spurious memory which contains a com-
ponent orthogonal to the memorized patterns. As the
value of k becomes smaller, the possibility of the exis-
tence of such kind of spurious memory increases.

Our consideration in this paper was restricted to the
existence of equilibrium solutions and local stability.
In order to get a complete understanding of the ability
of the associative memory using the nonmonotonic
neuron, we have to investigate further problems such
as the size of the basin of attraction, the full sketch of
spurious memories, and the behavior for clustered
memorized patterns.
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APPENDIX
A. Proof of Theorem 2

At first, two notations are introduced.

S,(r):The surface area of n-dimensional sphere of radius r(Z 7%, X
2 2
. Xi <r°).

S? ..:The solid angle covered by the center line of a cone C whose
vertex is at the origin and whose vertex angle is 26, when
the cone C moves in such a way that it has a nontrivial
intersection with an (# — m + 1)-dimensional subspace Q.

LEMMA A.1. The surface area of an n-dimensional sphere with radius
r can be expressed as follows:

S,,(r) = f‘/rzi—r—wz dXz. . .dx,,, (A,l)

where

n
lx|? =2 x}.
i=2

Proof: 1t is well known that S, (r) is expressed as follows:

- x p2m
S, (r)=r""! f .. f f sin”726,. . .sin 0,_,df,. . .df,_,.
o o Jo

By changing the polar coordinates into the orthogonal coordinates
X, = rcos b,

X, = rsin #,cos 05,

Xp-y = F8in 8. . .sin §,.,c0s 0,_,,
X, = rsin ;.. .sin 0,,sin 0,

the above integral can be rewritten as

1
Sy(r) = f———— dx,. . .dx,,
cos 0,

since the Jacobian for the coordinate change is
J = (r*'sin"20,. . sin 6, 5cos 6,)7L.

From this we have eqn. (A.1). B
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Now let us denote the (m — 1)-dimensional subspace which is
spanned by s* (p =2, ..., m)byy = (x|, ..., Xm) " and its or-
thocomplement Q, which is an (# — m + 1)-dimensional subspace,
by ¥ = (X, Xpms1, - - -, X,) 7. Then noting that the solid angle S
is the surface area of that part of the unit sphere whose distance from
Q is less than sin 8, we can write,

S0 _Jq dxf _.__i__._
" D mcosd -z V(1 ~ [x]2) — |p]2°

where |x|* = 2%, x?, |y|? = 27" x? and dx = d¥x,,. . .dx,, dy =
dx,. . .dx,,,. By using eqn (A.1), we can rewrite the above as

VI = |x2dy
S0 .=
"”‘ f\h 1x12f\/(1—|xl)—|yiz

_ dx — 2
—f——msm_m R
= [ ey, 1), (A2)

By changing x into polar coordinates (p, ¢, ...
rewrite the last integral of the above as

f‘ (17p2)m—3/2pn—mdpf”.“fﬂfzw
o =cosf 0 0 JO

s @n-m), WE Can

X sin" " o, . sin @, .de.
Transformation p = cos £ in this integral yields
0
f SIN"72E oS EAE Sy mer (1), (A.3)
0

Then from eqns (A.2), (A.3), and (13), Theorem 2 follows.

B. Proof of Theorem 3

In the notations (14) and (15), the angle 4,07 (denoted {,) satisfies
the following relation:

1 (m—n+ Dz + 2%z

cos { = . B.1
Vit 2,22 Vim—n+ 1)i+n-1 (B.1)

Note that coordinates z; satisfy
Zz,-=2>\j2p,‘3=m*l, (B.2)

i=2 j=2 =2

and
n n 2 ] l 2

Z (Z b22)° _(m—1) . (B3)

n—1 n—1
Then from relations (B.1), (B.2), and (B.3), we have

1 m -1

M1+(m—i)2V(mfn+l)2+n—l'
n—

If we put m = an, then

|cos &| <

as n—> oo.

|cos & = I(l - a)a\/ﬂ

Hence, we get ¢, — 7/2.

C. Proof of Theorem 4

Let us use notation ( 14) again and define a region R® which is the
positive convex hull of p; (i = 1 , 1) defined by,

Rm:{x!x:#Z)\zPi,Eki:I,AiZO,MZO}-

i=1 i=1

Moreover, let us introduce an #-dimensional random vector & = (u,,
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.., u,)T whose components 1; are mutually independent and obey
a normal distribution N(0, 1). We will denote Prw the probability
that the random vector u is contained in the region R*®.

The solid angle K,, spanned by the simplex R is equal to the prob-
ability P multiplied by the surface area of the n-dimensional unit
sphere. Vectors ¢;, which are normalization of p; in (14), have the
following direction cosines

2m—n
o ) S e T I a1
121 1
ialirey)) e

Hence, we can orthogonalize them by introducing the following
transformation

G=e— e, (C2)
n

2a — 1

1
(<0) (0<a<§),
c= (C.3)

1 1

- >0 > =

. GO (a3,
so that

é- € = by

Under the transformation (C.2), the random variables 1; are trans-
formed to

;= u; —i > u;. (C.4)

i=1

These new random variables #; are not mutually independent and
have correlations,

=2
E(gig/_):u
n
1—-2
-— (C.5)
na
Thus, #; can be written as
i = u; + ! v (C.6)
U= U+ =70, .
Vi

where v is a normal random variable with mean 0 and variance ¢ =
1 — 2a/a (where the case a > 1 is not treated here) and so

vE N, ¢?),
2:1~2a.

7 2

a

After the transformation (C.2), the probability that # = (u,. . .u,)7
is contained in R® becomes the probability that & = (d,. . .i,)7 is
contained in the positive convex hull of &, (i = 1, ..., n), namely 7;
> 0 for all i. Therefore, we have

K, .
—S—— = Preo = Pr(; > 0; Vi)

~=(f1 (- +(7)

=v;/_fa£:exp{— [2”2 log{l—@(v)}”du (C.7)

By the application of the saddle point approximation method to
the last integral of eqn (C.7), we have

K, _ Vn
Sn ma
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wexpl o] 28~ log (1 — @ Iy 2 C.8)
exp[ n[zaz og{ (vo)}h (00 0) (C.

where v, and ¥ are defined in Theorem 4, and ” denotes the second
derivative. Thus, we get eqn (18).

D. Proof of Corollary 5

The solid angle of a cone with vertex angle equal to 26, satisfies the
following equation:

0. [ T (2
f f L. f f sin"26,. . .sin 6,_,db,. . .do,_, (D.1)
0 0 0 0

6c
= S,,_,f sin"26,d9,. (D.2)
0

Therefore, the vertex angle 26, of a cone whose solid angle is equal
to that given in Theorem 4 is obtained from the relation,

02
exp{— n[—z—:—z —log{1 — ®(vy)} H
S 1 fr sin"20,d8,, (D.3)
S, C(vg, 0) o e '
where vy and C(v, o) are defined in Theorem 4.
Now let us note that we can construct a sequence of C* functions
$,(8) such that

si(0) = (D.4)

1 i
0 <s(0)<sin b 6<()<—/; or OC—E<0<BC,

and s%(8) are polynomial order in k, and
sinf 0<#6<4,
si(0) = s(8) = (D.5)
0 f.<b0<m/2,
as k — oo. For example, we can use
p(6.0 — 6)sin 0

4. 1y’
— f2 2 /R —
0(0,0 — 9 )+p(0 08+ kz)

si(0) = (D.6)

where p is defined by

o) =

exp(—1/1) (>0,
t=<0.

Then, the integral of the right hand side of eqn (D.3) is approximated
by

fﬂz $12(0)df = fﬂz exp{(n — 2)log s(0)}db.  (D.7)
(] 0

Since s,(6) has its maximum at a § (which is denoted 6,) in the
interval (0, — 1/k, 8,), we can apply the saddle point approximation
method and the value of the integral (D.7) is given by

n-2 2r
SE ) M—(n ~ 2y (05

Lastly, if we note that the maximum point 6, approaches , and
hence s5;(6,) approaches sin 6, and that the factor S,_, /S, satisfies

10 Sn—l
&S

n

= o(n),

we have eqn (20) by taking log of eqn (D.3).

S. Yoshizawa, M. Morita, and S.-I. Amari

E. Proof of Theorem 7
Substituting for x, in eqn (23) by eqn (24) we have

- k
dx_ ko kK gere Ko gory (E.1)
dt ko n n

Introduce the following coordinate transformation,

T=[SUI"", &=Tx, &= Tx, (E2)
where S is the matrix defined in eqn (2) and U is a matrix which is
composed of the basis vectors {u*, v = 1,..., n~ m} of the ortho-

complement of the subspace spanned by {s*, u = 1, ..., m}. By
these coordinates, eqn (E.1) can be expressed,

dr ko n

dE ke —k k[G O} +kO[G
n

o, E3
0 0 00]0’ (£:3)

where
G=S78S.
Let £ denote a vector formed from the first m components of £,

and £ be formed from the remaining n — m components. Then eqn
(E.3) can be expressed in a form with two isolated parts:

@ hokp ko ke
dr ko ¢ nG$+nG£O’
i} (E4)
E‘E - _ ko — kg
dt ko
Therefore, the equilibrium solution satisfies
- . k .
(k" kEm+5G)£ == Gk,
o " n
(E.5)
£=0.
Thus,
E=§+ 0k — k),
. (E.6)
£=0,

when k — ky. Hence, the equilibrium solution of eqn (E.1) tends to
: _[&
3 [ e (E7)

as k — k.
Now observe that R” can be decomposed into the direct sum,

R'=Z2'QOVOU, (E.8)

where %' is an (m — 1)-dimensional subspace spanned by s2, . . .,
s™, U is the (n — m)-dimensional orthocomplement of the subspace
Z spanned by s', ..., s and Vis the one-dimensional ortho-com-
plement of %’ in . In this decomposition £, is expressed as

av,

where v is the basis of V. The orthogonal projection onto 0 = VU
U maps the center line s' of the cone onto &, since s' is orthogonal
to U.

On the other hand, the equilibrium solution x; given in Theorem
1 has the form

av+u(ue U).

Since a cone is convex and symmetric with respect to its center line,
the point av — u is also included in the intersection of the cone and
Q, and hence the middle point ay is included in the intersection.
Hence, £ is in the intersection.



